
Mark P Jones & Andrew Tolmach, Portland State University

Week 2: Programs as Data

Winter 2019

CS 320: Principles of Programming Languages

�1

Data AnswersPrograms

 2

Let’s use our
computer to solve a

problem!

The computer scientist at work…

Data AnswersPrograms

It works!

Hmm, could this
help me too?

 3

But how do I make
programs run?

Programs AnswersPrograms

Program
Analysis

• Interpreters
• Static analysis tools
• Documentation

generators
• Browsers
• Testing tools
• Debuggers
• Profilers
• …

 4

Data ProgramsPrograms

Program
Synthesis

• Application template
generators

• Code “wizards”
• GUI builders
• Modeling tools
• Embedded languages

(e.g., dynamic web
pages)

• …

 5

Programs

Program
Translation

Programs Programs

• Compilers
• Code formatters
• Code update tools
• Macro processors
• Optimizers
• Partial evaluators
• Instrumentation
• Code editors
• …

 6

 7

How do we make
high-level programs

run on low-level
hardware?

Q

What makes a language “high-level”?
• Complex expressions (arithmetic, logical,...)

• Structured control (loops, conditionals, cases,...)

• Composite types (arrays, records, ...)

• Type declarations and type checking

• Multiple data storage classes (global/local/heap/GC?)

• Procedures/functions (private scope, closures,…)

• Non-local control (exceptions, threads,...)

• Data abstraction (ADTs, modules, objects...)

 8

What does hardware give us?
• Low-level machine instructions

• Control flow based on labels and conditional
branches

• Explicit locations (e.g. registers) for values and
intermediate results of computations

• Flat memory model

• Explicit memory management (e.g., stacks for
procedure local data)

 9

How can we bridge
 the gap?

 10

High-level language

Low-level machine

 11

Interpreters and compilers

Interpreters and compilers
In conventional English:

• interpreter: somebody that translates from one language
to another.

• Example: “I need an interpreter when I’m in Japan”

• compiler: somebody who collects, gathers, assembles, or
organizes information or things.

• Latin root: compilare, “plunder or plagiarize”

 12

Interpreters and compilers
According to my dictionary:

• in•ter•pret•er (noun) Computing: a program that can
analyze and execute a program line by line

• com•pile (verb) Computing (of a computer): convert (a
program) into a machine-code or lower-level form in which
the program can be executed

Derivatives: com•pil•er (noun)

 13

Interpreters and compilers
In computer science:

• An interpreter executes (or runs) programs

• An interpreter for a language L might be thought of as
a function: interpL : L → M, where M is some set of
meanings of programs

• A compiler translates programs

• A compiler from a language L to a language L’ might be
thought of as a function comp : L → L’

• By “language”, we mean the set of all strings that
correspond to valid programs

 14

Interpreters and compilers
• Interpreters execute programs (turning syntax to

semantics)

• Compilers translate programs (turning syntax into syntax)

compiler program
source

output

input

interpreter
source

output

input

 15

“Doing” vs “Thinking about doing”
• Compilers translate programs (turning syntax to syntax)

• Interpreters run programs (turning syntax to semantics)

• Example:

• Interpreter (Doing something): 
Use your calculator to evaluate (1+2)+(3+4):

Answer: 10

• Compiler (Thinking about doing something): 
Tell me what buttons to press to evaluate (1+2)+(3+4):

Answer:
1 + 2 = M 3 + 4 + MR =

 16

Basic terminology

source programs
many possible source languages, from traditional,
to application specific languages.

target programs
usually another programming language, often the
machine language of a particular computer
system.

 17

 .file "squares.s"
 .comm _esp0,4
 .globl _Main_main
_Main_main:
 pushl %ebp
 movl %esp,%ebp
 subl $4,%esp
 movl $0,%eax
 movl %eax,-4(%ebp)
 jmp l1
l0:
 movl -4(%ebp),%eax
 movl -4(%ebp),%ebx
 imull %ebx,%eax
 movl %esp,_esp0
 subl $4,%esp
 andl $0xfffffff0,%esp
 movl %eax,(%esp)
 call _print
 movl _esp0,%esp
 movl $1,%eax
 movl -4(%ebp),%ebx
 addl %ebx,%eax
 movl %eax,-4(%ebp)
l1:
 movl $10,%eax
 movl -4(%ebp),%ebx
 cmpl %eax,%ebx
 jle l0
 movl %ebp,%esp
 popl %ebp
 ret

// A simple mini test program

int i = 0; // initialize
while (i <= 10) {
 print i*i; // print a square
 i = i + 1;
}

Example

source program

target
program

$./squares
0
1
4
9
16
25
36
49
64
81
100
$ semantics

executeexecuterunrun

compile

 18

Compiler correctness
• A compiler should produce valid output for any valid input
• The output should have the same semantics as the input

 19

source

results

target

resultt

compL→L’

=

interpL interpL’

In symbols: ∀p. interpL (p) = interpL’ (compL→L’ (p))

Desirable properties of a compiler
• Performance:

• Of compiled code: time, space, power, …

• Of the compiler: time, space, …

• Diagnostics:

• High quality error messages and warnings to permit early
and accurate diagnosis and resolution of programming
mistakes

 20

• Support for large programming projects, including:

• Separate compilation, reducing the amount of
recompilation that is needed when part of a program is
changed

• Use of libraries, enabling effective software reuse

• Convenient development environment:

• Supports program development with an IDE or a range of
useful tools, for example: profiling, debugging, cross-
referencing, browsing, project management (e.g., make)

 21

Desirable properties, continued

Compiler examples
Compilers show up in many different forms:

• Translating programs in high-level languages like C, C++, Java,
etc… to executable machine code

• Just in time compilers: translating byte code to machine
code at runtime

• Rendering an HTML web page in a browser window
• Printing a document on a Postscript printer
• Generating audio speech from written text
• Translating from English to Spanish/French/…
• …

 22

Interpreter characteristics
Common (but not universal) characteristics:

• More emphasis on interactive use:

• Use of a read-eval-print loop (REPL)

• Examples: language implementations designed for
educational or prototyping applications

• Less emphasis on performance:

• Interpretive overhead that could be eliminated by
compilation

• Performance of scripting code, for example, is less of
an issue if the computations that are being scripted are
significantly more expensive

 23

Interpreter characteristics, continued
• Portability:

• An interpreter is often more easily ported to multiple
platforms than a compiler because it does not depend
on the details of a particular target language

• Experimental platforms:

• Specifying programming language semantics

• More flexible language designs; some features are
easier to implement in an interpreter than in a
compiler

 24

Interpreter examples
• Programming languages:

• Scripting languages: PHP, python, ruby, perl, bash,
Javascript, ...

• Educational languages: BASIC, Logo, ...

• Declarative languages: Lisp, Scheme, ML, Haskell, Prolog, ...

• Virtual machines: Java, Scala, C#, VB, Pascal (P-Code)

• Document description languages:

• Postscript, HTML, ...

 25

Interpreters and Machines
• A virtual machine is one important kind of interpreter

• Executes programs written in a virtual (i.e. software-
defined) instruction set

• Example: Java Virtual Machine (JVM) executes (interprets) a
language of byte codes

• There is no fundamental difference between this and a high-
level language interpreter: both execute programs in software

• A CPU executes (machine) programs in hardware:

• So it is a kind of interpreter too!

• Faster, but harder to change

 26

How can we bridge
 the gap?

 27

High-level language

Low-level machine

Another look at this question…

 28

High-level language

Low-level machine

Low-level language

Compiler

We can compile…

Interpreter

 29

High-level language

Low-level machine

High-level machine

We can interpret…

Interpreter

 30

High-level language

Low-level machine

Mid-level machine/language

We can do both…

Compiler

Run-time systems
• Even with a completely compiled approach, we usually need

a fixed library of code available at run time, e.g. for:

• Interfacing to the OS, e.g. to do IO

• Managing memory, e.g. via garbage collection

• Managing exception handlers

• This run-time system code is effectively like a (small) virtual
machine layer on top of the real hardware and OS process
abstraction

• Moral: Every real system involves some elements of
interpretation

 31

Language vs implementation
• Be very careful to distinguish between languages and their

implementations

• C is a widely used language

• Haskell is an expressive language

• Java is a well-defined language

• Python is a slow language (NO: speed is a property of an
implementation, not a language)

• C++ is a compiled language: (NO: “compiled” describes a
property of an implementation, not a language)

 32Q

Goals for Compiler Construction

 33

What is a compiler?
Compilers are translators:

compiler

source
programs

target
programs

diagnostics

 34

Why translation is needed
• We like to write programs at a higher-level than the machine

can execute directly

• Spreadsheet: sum [A1:A3]

• Java: a[1] + a[2] + a[3]

• Machine language: movl $0, %eax  
addl 4(a), %eax  
addl 8(a), %eax  
addl 12(a), %eax

• High-level languages let us describe what is to be done
without worrying about all the details

• In machine languages, every step must be carefully spelled out

 35

 36

• Search a database
• Send a message
• Create a song
• Play a game
• etc ...

Machines:

• Read a value from memory
• Add two numbers
• Compare two numbers
• Write a value to memory
• etc ...

High Level

Low Level

Ideas:

How do we turn high level ideas in to
running programs on low level machines?

 37

• Search a database
• Send a message
• Create a song
• Play a game
• etc ...

Machines:

• Read a value from memory
• Add two numbers
• Compare two numbers
• Write a value to memory
• etc ...

High Level

Low Level

Ideas:

Languages:

• Evaluate an expression
• Execute a computation multiple times
• Call a function
• Save a result in a variable
• ...

express

translate

• Search a database
• Send a message
• Create a song
• Play a game
• etc ...

• Read a value from memory
• Add two numbers
• Compare two numbers
• Write a value to memory
• etc ...

• Evaluate an expression
• Execute a computation multiple times
• Call a function
• Save a result in a variable
• ...

 38

Machines:

High Level

Low Level

Ideas:

Languages:

express

translate

human ingenuity
required

Admiral Grace
Hopper (1906-1992)
(Photo: via Wikipedia)

Could we program a
computer to do this?

• Search a database
• Send a message
• Create a song
• Play a game
• etc ...

• Read a value from memory
• Add two numbers
• Compare two numbers
• Write a value to memory
• etc ...

• Evaluate an expression
• Execute a computation multiple times
• Call a function
• Save a result in a variable
• ...

 39

Machines:

High Level

Low Level

Ideas:

Languages:

express

translate

Admiral Grace
Hopper (1906-1992)
(Photo: via Wikipedia)

Could we program a
computer to do this?

Yes! The A-0 system for
UNIVAC 1 (1951-52):  
the first compiler

• Search a database
• Send a message
• Create a song
• Play a game
• etc ...

• Read a value from memory
• Add two numbers
• Compare two numbers
• Write a value to memory
• etc ...

• Evaluate an expression
• Execute a computation multiple times
• Call a function
• Save a result in a variable
• ...

 40

Machines:

High Level

Low Level

Ideas:

Languages:

express

translate

human ingenuity
required

compiler construction

human ingenuity
required

Admiral Grace
Hopper (1906-1992)
(Photo: via Wikipedia)

• Search a database
• Send a message
• Create a song
• Play a game
• etc ...

• Read a value from memory
• Add two numbers
• Compare two numbers
• Write a value to memory
• etc ...

• Evaluate an expression
• Execute a computation multiple times
• Call a function
• Save a result in a variable
• ...

 41

Machines:

High Level

Low Level

Ideas:

Languages:

express

translate

human ingenuity
required

compiler construction

language design

human ingenuity
required

Languages and tools matter

 42

• Language designs empower developers to:

• Express their ideas more directly

• Execute their designs on a computer

• Better tools (compilers, interpreters, etc.) will:

• open programming to more people and more
applications

• increase programmer productivity

• enhance software quality (functionality, reliability, security,
performance, power, ...)

Basics of Compiler Structure

 43

// A simple mini test program

int i = 0; // initialize
while (i <= 10) {
 print i*i; // print a square
 i = i + 1;
}

How does a compiler work?

source program
target

program

runrun

compile

 .file "squares.s"
 .comm _esp0,4
 .globl _Main_main
_Main_main:
 pushl %ebp
 movl %esp,%ebp
 subl $4,%esp
 movl $0,%eax
 movl %eax,-4(%ebp)
 jmp l1
l0:
 movl -4(%ebp),%eax
 movl -4(%ebp),%ebx
 imull %ebx,%eax
 movl %esp,_esp0
 subl $4,%esp
 andl $0xfffffff0,%esp
 movl %eax,(%esp)
 call _print
 movl _esp0,%esp
 movl $1,%eax
 movl -4(%ebp),%ebx
 addl %ebx,%eax
 movl %eax,-4(%ebp)
l1:
 movl $10,%eax
 movl -4(%ebp),%ebx
 cmpl %eax,%ebx
 jle l0
 movl %ebp,%esp
 popl %ebp
 ret

We need to describe this
process in a way that is

scalable, precise,
mechanical/algorithmic, ...

 44

What is this?
Dark pixels on a light
background

A collection of lines/strokes

A sequence of characters

A single word (“token”)

An expression

A boolean expression

A truth value

False

One thing can be seen in many different ways

We can break a complex process into multiple (hopefully
simpler) steps

 45

“Compiling” English
• The symbols must be valid:

hdk fΩfdh ksdßs dfsjf dslkjé

• The words must be valid:
banana jubmod food funning

• The text must use correct grammar:
my walking up left tree dog

• Now we have preliminary abstract syntax:
This sentence is a complete.

✘ source input

✘ lexical analysis

✘ parser

 46

✓
ready for “analysis”

“Compiling” English
• The phrase must make sense

This sentence is not true.

• The phrase must not be ambiguous
Close the window. My old friend.

• The sentence must fit in context
The next song is about geography.

• Finally, we have valid abstract syntax!
Languages are very interesting.

✘

✘

✘

✓

static 
analysis

 47

ready for “code generation”

The compiler pipeline
• Traditionally, the task of compilation is broken down into

several steps, or compilation phases:

 48

Source input (not a standard term)

• Turn data from a raw input source into a sequence of
characters or lines

Data might come from a disk, memory, a keyboard, a
network, a thumb drive, ...
The operating system usually takes care of most of this ...

source  
input

raw 
input

character 
stream

 49

Lexical analysis

• Convert the input stream of characters into a stream of
tokens

• For example, the keyword for is treated as a single token,
and not as three separate characters

• “lexical”:
“of or relating to the words or vocabulary of a language”

source  
input

lexical 
analysis

character 
stream

token  
stream

 50

Parser

• Build data structures that capture the underlying structure
(abstract syntax) of the input program

• Determines whether inputs are grammatically well-formed
(and reports a syntax error when they are not)

source  
input

lexical 
analysis parser

token  
stream

structured 
representation

 51

Static analysis

• Check that the program is reasonable:
no references to unbound variables
no type inconsistencies
etc...

source  
input

lexical 
analysis parser static  

analysis

structured 
representation

validated 
representation

 52

Code generation

• Generate an appropriate sequence of machine instructions
as output

• Different strategies are needed for different target machines

source  
input

lexical 
analysis parser static 

analysis
code  

generator

validated 
representation

translated 
program

 53

Optimization

• Look for opportunities to improve the quality of the output
code:

There may be conflicting ways to “improve” a given program;
the choice depends on the context/the user’s priorities
Producing genuinely “optimal” code is theoretically
impossible; “improved” is as good as it gets!

source  
input

lexical 
analysis parser static 

analysis
code 

generator optimizer

translated 
program

optimized 
program

 54

The full pipeline

• There are many variations on this approach that you’ll see in
practical compilers:

extra phases (e.g., preprocessing)
iterated phases (e.g., multiple optimization passes)
additional data may be passed between phases

source  
input

lexical 
analysis parser static 

analysis
code 

generator optimizer

raw 
input

character 
stream

token  
stream

structured 
representation

validated 
representation

translated 
program

optimized 
program

 55
Q

Snapshots from a “mini” compiler pipeline

 56

Snapshots from a “mini” compiler pipeline
• In this week’s labs, we’ll trace the results of passing the

following program through a compiler for a language called
“mini”

• A sample mini program:

• The goal here is just to get a sense of how compiler phases
work together in practice; you don’t need to understand all
of the fine details

// A simple mini test program

int i = 0; // initialize
while (i <= 10) {
 print i*i; // print a square
 i = i + 1;
}

 57

// A simple mini test program

int i = 0; // initialize
while (i <= 10) {
 print i*i; // print a square
 i = i + 1;
}

Source input (as numbers)

|47|47|32|65|32|115|105|109|112|108|101|32|77|105|110|105|
32|116|101|115|116|32|112|114|111|103|114|97|109|10|10|105|
110|116|32|105|32|61|32|48|59|32|32|32|32|47|47|32|105|110|
105|116|105|97|108|105|122|101|10|119|104|105|108|101|32|40|
105|32|60|61|32|49|48|41|32|123|10|32|32|112|114|105|110|
116|32|105|42|105|59|32|32|47|47|32|112|114|105|110|116|32|
97|32|115|113|117|97|114|101|10|32|32|105|32|61|32|105|32|
43|32|49|59|10|125|10|

 58

Source input (as characters)

|/|/| |A| |s|i|m|p|l|e| |m|i|n|i| |t|e|s|t| |p|r|o|g|r|a|m|\n
|\n
|i|n|t| |i| |=| |0|;| | | | |/|/| |i|n|i|t|i|a|l|i|z|e|\n
|w|h|i|l|e| |(|i| |<|=| |1|0|)| |{|\n
| | |p|r|i|n|t| |i|*|i|;| | |/|/| |p|r|i|n|t| |a| |s|q|u|a|r|e|\n
| | |i| |=| |i| |+| |1|;|\n
|}|\n
|\n

|47|47|32|65|32|115|105|109|112|108|101|32|109|105|110|105|
32|116|101|115|116|32|112|114|111|103|114|97|109|10|10|105|
110|116|32|105|32|61|32|48|59|32|32|32|32|47|47|32|105|110|
105|116|105|97|108|105|122|101|10|119|104|105|108|101|32|40|
105|32|60|61|32|49|48|41|32|123|10|32|32|112|114|105|110|
116|32|105|42|105|59|32|32|47|47|32|112|114|105|110|116|32|
97|32|115|113|117|97|114|101|10|32|32|105|32|61|32|105|32|
43|32|49|59|10|125|10|

 59

Lexical analysis
|/|/| |A| |s|i|m|p|l|e| |m|i|n|i| |t|e|s|t| |p|r|o|g|r|a|m|\n
|\n
|i|n|t| |i| |=| |0|;| | | | |/|/| |i|n|i|t|i|a|l|i|z|e|\n
|w|h|i|l|e| |(|i| |<|=| |1|0|)| |{|\n
| | |p|r|i|n|t| |i|*|i|;| | |/|/| |p|r|i|n|t| |a| |s|q|u|a|r|e|\n
| | |i| |=| |i| |+| |1|;|\n
|}|\n
|\n

| INT | ID(i) | = | INTLIT(0) | Semicolon ";" | WHILE
| Open parenthesis "(" | ID(i) | <= | INTLIT(10)
| Close parenthesis ")" | Open brace "{" | PRINT | ID(i)
| * | ID(i) | Semicolon ";" | ID(i) | = | ID(i) | +
| INTLIT(1) | Semicolon ";" | Close brace "}" |

 60

Parsing
| INT | ID(i) | = | INTLIT(0) | Semicolon ";" | WHILE
| Open parenthesis "(" | ID(i) | <= | INTLIT(10)
| Close parenthesis ")" | Open brace "{" | PRINT | ID(i)
| * | ID(i) | Semicolon ";" | ID(i) | = | ID(i) | +
| INTLIT(1) | Semicolon ";" | Close brace "}" |

Stmts

InitVarIntro(i) While

IntLit, 0 Lte, <= {...}

Id, i IntLit, 10 Print ExprStmt

Mul, *

Id, i Id, i

Assign

Id, i Add, +

Id, i IntLit, 1

 61

Static analysis
Stmts

InitVarIntro(i) While

IntLit, 0 Lte, <= {...}

Id, i IntLit, 10 Print ExprStmt

Mul, *

Id, i Id, i

Assign

Id, i Add, +

Id, i IntLit, 1

{ (i, int) }

 62

✓

Code generation

Stmts

InitVarIntro(i) While

IntLit, 0 Lte, <= {...}

Id, i IntLit, 10 Print ExprStmt

Mul, *

Id, i Id, i

Assign

Id, i Add, +

Id, i IntLit, 1

 .file "squares.s"
 .comm _esp0,4
 .globl _Main_main
_Main_main:
 pushl %ebp
 movl %esp,%ebp
 subl $4,%esp
 movl $0,%eax
 movl %eax,-4(%ebp)
 jmp l1
l0:
 movl -4(%ebp),%eax
 movl -4(%ebp),%ebx
 imull %ebx,%eax
 movl %esp,_esp0
 subl $4,%esp
 andl $0xfffffff0,%esp
 movl %eax,(%esp)
 call _print
 movl _esp0,%esp
 movl $1,%eax
 movl -4(%ebp),%ebx
 addl %ebx,%eax
 movl %eax,-4(%ebp)
l1:
 movl $10,%eax
 movl -4(%ebp),%ebx
 cmpl %eax,%ebx
 jle l0
 movl %ebp,%esp
 popl %ebp
 ret

 63

Assembly
 .file "squares.s"
 .comm _esp0,4
 .globl _Main_main
_Main_main:
 pushl %ebp
 movl %esp,%ebp
 subl $4,%esp
 movl $0,%eax
 movl %eax,-4(%ebp)
 jmp l1
l0:
 movl -4(%ebp),%eax
 movl -4(%ebp),%ebx
 imull %ebx,%eax
 movl %esp,_esp0
 subl $4,%esp
 andl $0xfffffff0,%esp
 movl %eax,(%esp)
 call _print
 movl _esp0,%esp
 movl $1,%eax
 movl -4(%ebp),%ebx
 addl %ebx,%eax
 movl %eax,-4(%ebp)
l1:
 movl $10,%eax
 movl -4(%ebp),%ebx
 cmpl %eax,%ebx
 jle l0
 movl %ebp,%esp
 popl %ebp
 ret

$ od -A x -t x1 squares.o
0000000 ce fa ed fe 07 00 00 00 03 00 00 00 01 00 00 00
0000010 03 00 00 00 e4 00 00 00 00 00 00 00 01 00 00 00
0000020 7c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000030 00 00 00 00 00 00 00 00 87 00 00 00 00 01 00 00
0000040 87 00 00 00 07 00 00 00 07 00 00 00 01 00 00 00
0000050 00 00 00 00 5f 5f 74 65 78 74 00 00 00 00 00 00
0000060 00 00 00 00 5f 5f 54 45 58 54 00 00 00 00 00 00
0000070 00 00 00 00 00 00 00 00 87 00 00 00 00 01 00 00
0000080 00 00 00 00 88 01 00 00 08 00 00 00 00 04 00 80
0000090 00 00 00 00 00 00 00 00 02 00 00 00 18 00 00 00
00000a0 c8 01 00 00 05 00 00 00 04 02 00 00 20 00 00 00
00000b0 0b 00 00 00 50 00 00 00 00 00 00 00 02 00 00 00
00000c0 02 00 00 00 01 00 00 00 03 00 00 00 02 00 00 00
00000d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
0000100 55 89 e5 83 ec 08 b8 00 00 00 00 89 45 fc b8 00
0000110 00 00 00 89 45 f8 e9 3b 00 00 00 8b 45 fc 8b 5d
0000120 fc 0f af c3 89 25 00 00 00 00 83 ec 04 83 e4 f0
0000130 89 04 24 e8 c8 ff ff ff 8b 25 00 00 00 00 8b 45
0000140 fc 8b 5d f8 01 d8 89 45 f8 b8 01 00 00 00 8b 5d
0000150 fc 01 d8 89 45 fc b8 0a 00 00 00 8b 5d fc 39 c3
0000160 0f 8e b5 ff ff ff 8b 45 f8 89 25 00 00 00 00 83
0000170 ec 04 83 e4 f0 89 04 24 e8 83 ff ff ff 8b 25 00
0000180 00 00 00 89 ec 5d c3 00 7f 00 00 00 03 00 00 0c
0000190 79 00 00 00 04 00 00 0d 6b 00 00 00 03 00 00 0c
00001a0 62 00 00 00 01 00 00 05 3a 00 00 00 03 00 00 0c
00001b0 34 00 00 00 04 00 00 0d 26 00 00 00 03 00 00 0c
00001c0 17 00 00 00 01 00 00 05 19 00 00 00 0e 01 00 00
00001d0 56 00 00 00 1c 00 00 00 0e 01 00 00 1b 00 00 00
00001e0 07 00 00 00 0f 01 00 00 00 00 00 00 01 00 00 00
00001f0 01 00 00 00 04 00 00 00 12 00 00 00 01 00 00 00
0000200 00 00 00 00 00 5f 65 73 70 30 00 5f 4d 61 69 6e
0000210 5f 6d 61 69 6e 00 5f 70 72 69 6e 74 00 6c 31 00
0000220 6c 30 00 00
0000224

 64

Modularity in compiler design

 65

Modularity
• Modularity is all about building large systems from

collections of smaller components

• Modular implementations can be easier to write, test, debug,
understand, and maintain than monolithic implementations

• For example:
• Components can be developed independently
• Some components can be reused in other contexts
• Some components may even be useful as standalone

tools

 66

Combining compilers
• The classic Unix C compiler, cc, is implemented by a

pipeline of compilers:

cc

 67

prog.c prog.o

Combining compilers
• The classic Unix C compiler, cc, is implemented by a

pipeline of compilers:

cpp

cpp: the C preprocessor, expands the use of
macros and compiler directives in the source
program

 68

prog.c prog.i

Combining compilers
• The classic Unix C compiler, cc, is implemented by a

pipeline of compilers:

cpp cc1

cc1: the main C compiler, which translates
C code to the assembly language for a
particular machine

 69

prog.c prog.S

Combining compilers
• The classic Unix C compiler, cc, is implemented by a

pipeline of compilers:

cpp cc1 as

as: the assembler, which translates assembly
language programs into machine code
 

 70

prog.c prog.o

Advantages of modularity
• Some components (e.g., as) are useful in their own right

• Some components can be reused (e.g., replace cc1 to build
a C++ compiler)

• Some components (e.g., cpp) are machine independent, so
they do not need to be rewritten for each new machine

• Modular implementations can be easier to write, test, debug,
understand, and maintain

 71

Disadvantages of modularity?
• Performance

It takes extra time to write out the data produced at the
end of each stage

It takes extra time to read it back in at the beginning of the
next stage

Later stages may need to repeat calculations from earlier
stages if the information that they need is not included in
the output of those earlier stages

• But modern machines and disks are pretty fast, and
compilers are often complex, so modularity usually wins!

 72

General building blocks
• A front end reads source programs (e.g., flat text files)

and captures the corresponding abstract syntax in a
collection of data structures (e.g., trees, graphs, arrays, …)

• A middle end analyzes and manipulates the abstract
syntax data structures of a program

• A back end generates output(e.g., a flat, binary executable
file) from the abstract syntax data structures of a program

• Substantial parts of these components can be shared by
multiple tools

• Example: the ghc (compiler) and ghci (interpreter) for
Haskell use the same front and middle end components

• Example: the g++ compiler for C++ and gcc compiler
for C use the same middle and back end components

 73

• Suppose that we want to write compilers for n different
languages, with m different target platforms.

• That’s n x m different compilers!

Multiple languages and targets

C

C++

Java

Ada

x86

ARM

JVM

 74

An intermediate language
• Alternatively: design a general purpose, shared “intermediate

language”:

• Now we only have n front ends and m back ends to write!

• The biggest challenge is to find an intermediate language
that is general enough to accommodate a wide range of
languages and machine types

C

C++

Java

Ada

x86

ARM

JVM

IL

 75

Summary
• Basic principles

programs as data

• Interpreters and compilers
correctness means preserving semantics

• The compiler pipeline / “phase structure”
source input, lexical analysis, parsing, static analysis, code
generation, optimization

• Modularity
Techniques for simplifying compiler construction tasks

 76

