

Markets and Malware:
Detecting Malicious and Privacy-stealing Apps in Smartphone

Marketplaces

Shaun Brandt
CS 591

11/26/2012

Introduction

● Smartphones have quickly managed to become the most
dominant portion of the wireless device market

– And the computing market in general, when combined
with tablet devices

● Hundreds of millions of devices are already active, and
tens of millions more are activated every year

● 'Apps' are one of the main attractions to smartphone
buyers, and they have collectively downloaded billions!

● Apps = executable code = potential for malware

Introduction, continued

● There are many smartphone platforms:

– Apple: iOS

– Google: Android

– Microsoft: Windows Phone

– Research in Motion: Blackberry OS

– Others: Symbian, WebOS, MeeGo

● Apple and Google have, by far, the largest marketshare, and
the two (especially the latter) are the focus of my paper.

Why target smartphones?

● Contact information

– Phone numbers, e-mail addresses, even physical
addresses in some cases

● Access to services that can make attackers money!

– Phone calls to international numbers

– SMS messages to premium numbers and short codes

– The user won't even notice until they get their bill
● Device serial numbers (IMEIs)

Existing security infrastructure

(NOTE: my paper covers the topic much more extensively)

● Two different models

● Apple's model for iOS devices:

– Walled garden (their marketplace or none)

– Only licensed developers can submit apps

– Apps are checked before publication

– Apps are digitally signed

– Apps' ability to read and write files are tightly controlled

Existing security infrastructure

● Google's model for Android devices:

– Open market (many third-party marketplaces)

– Apps are sanity checked, but not exhaustively checked for
malicious behavior

– Only apps that declare intent to use dangerous features can
call the functions that provide them

– Account segregation (different user) for each app

– Java VM / sandbox

– The user has primary responsibility – a list of required
dangerous permissions is shown at install time, and the user
must accept all of them

Active research

● Detecting malware and preventing privacy leaks are both
areas of active research

● Most research concentrates on Android (since it's open
source)

● Research is concentrated in a few areas:

– Detection as part of the app submission process

– Detection at install time

– Detection at run time

– Enhancement of existing security infrastructure

Detection at app submission time

● AppInspector

– From the paper 'Vision: Automated Security Validation
of Mobile Apps at App Markets'

– Developed by Peter Gilbert et al.

– Extension of previous work done on a tool called
TaintDroid

– Uses a technique called dynamic taint analysis to
track the flow of private information through an app,
from the 'source' (address book, GPS location), to a
'sink' (the external network)

AppInspector

● Dynamic taint analysis

– When sensitive data is accessed, that data has a tag
attached to it

– As the data is moved along through the code, the tag
persists

– If the tagged data leaves the device through a sink,
then this is considered a potential private data leak

– The code is inspected symbolically and through actual
execution (in a virtual machine)

AppInspector, continued

● AppInspector is an off-line version of the TaintDroid tool,
designed to be run by the vendor as a step of the app
submission process

– TaintDroid was made to run in real-time, tracking
private data flows on the device itself

PiOS

● From the paper 'PiOS: Detecting Privacy Leaks in iOS
Applications' by Manuel Egele et al.

● PiOS is a tool that behaves in a similar way to
AppInspector, but for iOS devices

– Analysis is only done statically

– Data is traced from source to sink
● However, iOS apps are usually written in Objective C,

which makes tracking data difficult...

PiOS, continued

● Analysis requires that the tool can create a control flow
graph (CFG) to trace through execution, but:

– Objective C uses a message-passing interface instead
of direct function calls or structures like vtables

– All messages are dispatched through a single
function!

– Applications from the official marketplace are
encrypted and digitally signed

● Even with these problems, the team was able to develop
PiOS

PiOS, continued

● Encrypted apps were grabbed at execution time with a
jailbroken phone and debugger (while they were in a
decrypted state)

● Apps from Cydia (a third-party marketplace) were also
used

● The disassembled apps and binary header information
were used to infer class structure and create the CFG

● Static analysis could then be done, linking sources to
sinks

PiOS, continued

● Tested on 1400 apps – most were found to respect
private data

● Even most apps from the Cydia marketplace (which
Apple has no control over) were well-behaved!

Other papers

● Malicious app detection at install time

– Kirin: an infrastructure to describe 'dangerous'
combinations of permissions on Android phones, and
block installation

● Example: an app that wants to check phone state,
record audio and connect to the Internet may be a
phone call recording/monitoring app

● The paper describes a security policy, and through
Kirin, provides a method of enforcing it

Other papers, continued

● Offloading malware detection to the cloud (yes, the
cloud...)

● Paranoid Android

– The idea: log device behavior, transmit over the
network, and replay all actions on a VM clone of the
device living on a server somewhere

– Only monitors activities that cause non-determinism,
to save space

– Analysis can then be done using methods that are too
slow to do in real time

Other papers, continued

● You may be asking 'but isn't transmitting all of the
phone's activity to a remote server a breach of
confidentiality?'

– The target market is corporate / military environments

– 'Confidentiality' and 'integrity' are more important to
the company or agency that owns the device (and
their data), not the user

Other papers, continued

● Enhancing Android's existing permissions infrastructure

– TISSA – a tool developed by Yajin Zhou et al.

– Adds new finer-grained permissions

– More importantly, allows individual permissions to be
granted or denied at runtime (as opposed to the all-or-
nothing, install-time only option that Android currently
offers)

– Can be configured to return bogus data in place of real
data

Other papers, continued

● Detecting modified apps in third-party marketplaces

– Popular apps are frequently repackaged and put on
unofficial marketplaces

– They may contain malware, or modifications to provide
revenue to the person who did the repackaging

● DroidMOSS is a tool that uses fuzzy hashing to
fingerprint apps. Apps that are 'mostly' the same can be
detected in this manner

Other papers, continued

● Tested on 6 third-party marketplaces: between 5 and 13
percent of apps were repackaged

– Some redirected ad affiliate credentials to give
revenue to the repackager

– Some add ads to apps that previously didn't have
them

– A few added malware packages (mainly to send
messages to premium SMS numbers)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

