
CS491/591 Intro. to Computer Security
Fall 2012

Lecture on Cryptographic Primitives

1



INDUSTRIAL -STRENGTH CRYPTO

• Shared key (symmetric) methods

• Private key (asymmetric) methods

• (Hash functions)

PSU CS491/591 F’12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 2



SHARED KEY CRYPTOGRAPHY

Sender and receiver share a key.

• Secret between the two of them.

• n participants require n2 keys.

• How do they get the keys?

Typically these are block ciphers

• Encrypt blocks of plaintext into blocks of ciphertext

• Use combination of substutition and transposition in form of
SP-network.

• Networks needs to be wide enough, have enough rounds, and have
good S-box internal design.

PSU CS491/591 F’12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 3



SP-NETWORK ARCHITECTURE

(from Ross Anderson, Security Engineering)

PSU CS491/591 F’12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 4



DES (DATA ENCRYPTION STANDARD )

Standardized in 1976.

Security analyzed by NSA.

• Algorithm is public, but full design rationale is not.

• There were persistent worries about “back doors.”

Widely used in banking, government, and embedded applications.

Block size = 64 bits
Key length = 56 bits
Structured as 16-round Feistel cipher

Uses simple operators on (up to) 64 bit values.

Relatively simple and fast to implement in software and hardware.

PSU CS491/591 F’12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 5



FEISTEL STRUCTURE

(from Ross Anderson, Security Engineering)

PSU CS491/591 F’12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 6



FEISTEL

Important feature of Feistel: decrypt just by applying functions fj in
reverse order.

Proof: Have

Lj = Rj−1

Rj = Lj−1 ⊕ fj(Rj−1)

Thus

Rj−1 = Lj

Lj−1 ⊕ fj(Rj−1) = Rj

Lj−1 ⊕ fj(Rj−1)⊕ fj(Rj−1) = Rj ⊕ fj(Rj−1)

Lj−1 = Rj ⊕ fj(Rj−1)

Lj−1 = Rj ⊕ fj(Lj)

Consequently the fj don’t need to be invertible; makes design easier.

PSU CS491/591 F’12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 7



WHAT IS IN DES FEISTEL ROUND?

• expansion, addition of key material, processing with ”S boxes”,
permutation

• box is a 6-to-4 substitution table

• design is black art

The kinds of characteristics we want:

• No output should be close to a linear funcion of the inputs.

• If inputs differ in exactly one bit, output must differ in at least 2 bits.

• Etc.

In fact, DES S-boxes appear to work very well, but we don’t really know
why!

But DES is not very secure because key length is so short.

• By 1999, a distributed attack could break it in 22 hours.

Still used today, but typically using a triple repitition to get larger effective
key length (just a double repetition doesn’t help).

PSU CS491/591 F’12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 8



AES (A DVANCED ENCRYPTION STANDARD )

Result of public NIST competition.

Uses Rijndael algorithm, invented by a pair of Dutch cryptographers.

Adopted in 2002.

Used broadly in industry, ecommerce, government...

Blocksize = 128 bits
Keylength = 128, 192 or 256 bits
Rounds = 10, 12, or 14

Fast on stock hardware, and newer X86 processors include custom
instructions.

PSU CS491/591 F’12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 9



WHAT IS IN A RIJNDAEL ROUND ?

Each round consists of four steps applied to 4x4 square of bytes:

• xor in a key (specific to each round, derived from user key by a formula)

• apply a substitution using an S-box to each byte

• shift each row by a different amount

• mix contents of columns using a combination of shifts and xors.

Note: all these steps (and sbox) are invertible.

Best short-cut attack on 128-bit version that recovers key (chosen
ciphertext) is O(2126), almost as slow as brute force O(2128).

Happily, Rijndael can be extended to larger key sizes.

PSU CS491/591 F’12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 10



ELECTRONIC CODE BOOK

Important issue with block ciphers: what to do on longer messages?

• ECB is simplest approach: each n-bit block is independently using the
same key

• not very secure: just a substitution cipher with alphabet of n-bit strings

PSU CS491/591 F’12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 11



CIPHER BLOCK CHAINING

• Each block of plaintext is xor’ed with preceding block of ciphertext
before encryption:

(from Ross Anderson, Security Engineering)

• secure against passive (no injection) attacks

• not so secure against chosen plaintext attacks

PSU CS491/591 F’12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 12



PUBLIC KEY CRYPTOGRAPHY

Uses two keys, one public and one secret.

D(sk,E(pk,M)) = M

Receiver publishes their public key.

n participants need only n (pairs of) keys

Security is based on notion of trapdoor function:

(from Tom Ristenpart)

Existence of these functions is based on mathematical computation
problems that are believed to be hard.

PSU CS491/591 F’12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 13



RSA (R IVEST/SHAMIR /ADLEMAN ) ALGORITHM

Proposed in 1979.

• Designers won 2002 Turing Award

• Very similar work was developed by Britain’s GCHQ ca. 1970 — but
never published (or used).

Widely used in protocols, especially to establish shared keys for cheaper
protocols.

1000X slower than DES and harder to implement

Basic Idea:

• Treat plaintext as a large binary number.

• Encrypt by modular exponentiation (repeated multiplication modulo a
number).

• Security is based on assumed difficulty of factoring large numbers.
Largest number known to have been factored by general-purpose
algorithm is 768 bits. RSA typically uses 1024-2048 bits.

PSU CS491/591 F’12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 14



NUMBER THEORY PRELIMINARIES

Recall definition of mod operator:
a mod b = remainder (“residue”) when a is divided by b

Have:
• (a+ b) mod n = ((a mod n) + (b mod n))mod n

• ab mod n = ((a mod n)(b mod n)) mod n

Define “congruence mod n” as follows:
• a ≡ b(mod n) iff a = b+ kn for some integer k

Will make use of the idea of multiplicative inverse modulo n:
a−1 is the number in {0, . . . , n− 1} such that a ∗ a−1 ≡ 1(mod n).

The multiplicative inverse exists whenever a and n are relatively prime
(have no common factors other than 1). Examples:

• 2−1 = 3(mod 5) because 2 ∗ 3 ≡ 1(mod 5).

• 4−1 = 4(mod 5) because 4 ∗ 4 ≡ 1(mod 5).

• 3−1 = 7(mod 10) because 3 ∗ 7 ≡ 1(mod 10).

PSU CS491/591 F’12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 15



RSA KEY GENERATION

• Choose large distinct primes p and q

• Set n = p ∗ q

• Choose a random encryption exponent e such that e and
(p− 1) ∗ (q − 1) are relatively prime

• Derive decryption exponent d as d = e−1(mod ((p− 1) ∗ (q − 1))). (This
exists because e and (p− 1) ∗ (q − 1) are relatively prime).

• Public key pk = (e, n)

• Secret key sk = (d, n)

• Now forget p and q; we don’t need them anymore and we must not
accidentally disclose them!

PSU CS491/591 F’12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 16



RSA ENCRYPTION AND DECRYPTION

Given message m < n

• (break up m into parts smaller than n if necessary)

E((e, n),m) = me mod n

D((d, n), c) = cd mod n

Note that these are not cheap operations (even with some useful
shortcuts).

PSU CS491/591 F’12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 17



EXAMPLE RSA

Choose p = 47,q = 71

• n = p ∗ q = 3337

• (p− 1) ∗ (q − 1) = 3220

• Choose e relatively prime with 3220: e.g. e = 79

• Public key is (79, 3337)

• Find d = 79−1 mod 3220 = 1019

• Private key is (1019, 3337)

To encrypt m = 688232687966683

• Break into chunks < 3337 : 688 232 687 966 683

• Encrypt: E((79, 3337), 688) = 68879 mod 3337 = 1570

• Decrypt: D((1019, 3337), 1570) = 15701019 mod 3337 = 688

PSU CS491/591 F’12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 18



A LITTLE NUMBER THEORY

A (fairly) elementary fact in number theory (Euler’s generalization of
Fermat’s “little” theorem’) says that:

If m and n are relatively prime, then mφ(n) ≡ 1(mod n).

• where “Euler’s totient function” φ(n) = number of positive integers ≤ n

that are relatively prime to n.

[Proof omitted.]

Corollary: Suppose m and n are relatively prime and ed ≡ 1(mod φ(n))

for some e, d ≥ 1. Then we can write ed = 1 + hφ(n) for some
nonnegative integer h. So:

med ≡ m1+hφ(n) ≡ m(mφ(n))h ≡ m(mod n)

PSU CS491/591 F’12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 19



WHY DOES RSA WORK?

In the RSA setting, we have n = pq for p, q prime. It is then easy to see
[proof omitted] that φ(n) = ((p− 1) ∗ (q − 1)), and so ed ≡ 1(mod φ(n))

(by definition of d).

Hence the corollary from the previous page applies:

med ≡ m1+hφ(n) ≡ m(mφ(n))h ≡ m(mod n)

So now suppose c = me mod n. Then:

cd mod n

= (me mod n)d mod n (defn)

= med mod n (arith)

= m mod n (by corollary∗)

= m (because m < n)

∗ a slightly different argument is needed if m and n are not relatively
prime (though this is highly unlikely in practice!)

PSU CS491/591 F’12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 20



OTHER PUBLIC KEY SYSTEMS

Other results in number theory provide similar sources of (presumably)
hard problems.

Discrete Logarithms

For prime p, the set Zp = {0, 1, ...p− 1} with operations mod p form a
finite field with usual laws of arithmetic.

A “primitive root g modulo a prime p” is a number in Zp such that
{g0 mod p, g1 mod p, . . . , gp−1 mod p} = Zp. (We say g “generates” the
group Zp.)

For any primitive root g of a large prime p, the function

f(x) = gx mod p

is effectively a “one-way” function — that is, there is no computationally
efficient way to invert it (as far as we know).

PSU CS491/591 F’12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 21



DIFFIE-HELLMAN KEY EXCHANGE

Protocol for obtaining a shared secret using public communication.

• Security based on difficulty of discrete logarithm problem.

• Used as basis for ElGamel public key protocol.

Method:

• Alice and Bob publicly agree on a large prime p and primitive root g.

• Alice chooses a secret value A; Bob chooses a secret value B.

• Alice send Bob gA mod p and Bob sends Alice gB mod p.

• The shared secret is gAB mod p.

• Alice and Bob can each easily calculate this by exponentiating (mod p)
the value they receive by their secret value.

• Eve the evil eavesdropper cannot do this easily (as far as we know). In
particular, Eve cannot extract A from gA mod p without solving the
discrete logarithm problem.

PSU CS491/591 F’12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 22


