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INDUSTRIAL -STRENGTH CRYPTO

• Shared key (symmetric) methods

• Private key (asymmetric) methods

• (Hash functions)
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SHARED KEY CRYPTOGRAPHY

Sender and receiver share a key.

• Secret between the two of them.

• n participants require n2 keys.

• How do they get the keys?

Typically these are block ciphers

• Encrypt blocks of plaintext into blocks of ciphertext

• Use combination of substutition and transposition in form of
SP-network.

• Networks needs to be wide enough, have enough rounds, and have
good S-box internal design.
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SP-NETWORK ARCHITECTURE

(from Ross Anderson, Security Engineering)
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DES (DATA ENCRYPTION STANDARD )

Standardized in 1976.

Security analyzed by NSA.

• Algorithm is public, but full design rationale is not.

• There were persistent worries about “back doors.”

Widely used in banking, government, and embedded applications.

Block size = 64 bits
Key length = 56 bits
Structured as 16-round Feistel cipher

Uses simple operators on (up to) 64 bit values.

Relatively simple and fast to implement in software and hardware.
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FEISTEL STRUCTURE

(from Ross Anderson, Security Engineering)
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FEISTEL

Important feature of Feistel: decrypt just by applying functions fj in
reverse order.

Proof: Have

Lj = Rj−1

Rj = Lj−1 ⊕ fj(Rj−1)

Thus

Rj−1 = Lj

Lj−1 ⊕ fj(Rj−1) = Rj

Lj−1 ⊕ fj(Rj−1)⊕ fj(Rj−1) = Rj ⊕ fj(Rj−1)

Lj−1 = Rj ⊕ fj(Rj−1)

Lj−1 = Rj ⊕ fj(Lj)

Consequently the fj don’t need to be invertible; makes design easier.

PSU CS491/591 F’12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 7



WHAT IS IN DES FEISTEL ROUND?

• expansion, addition of key material, processing with ”S boxes”,
permutation

• box is a 6-to-4 substitution table

• design is black art

The kinds of characteristics we want:

• No output should be close to a linear funcion of the inputs.

• If inputs differ in exactly one bit, output must differ in at least 2 bits.

• Etc.

In fact, DES S-boxes appear to work very well, but we don’t really know
why!

But DES is not very secure because key length is so short.

• By 1999, a distributed attack could break it in 22 hours.

Still used today, but typically using a triple repitition to get larger effective
key length (just a double repetition doesn’t help).
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AES (A DVANCED ENCRYPTION STANDARD )

Result of public NIST competition.

Uses Rijndael algorithm, invented by a pair of Dutch cryptographers.

Adopted in 2002.

Used broadly in industry, ecommerce, government...

Blocksize = 128 bits
Keylength = 128, 192 or 256 bits
Rounds = 10, 12, or 14

Fast on stock hardware, and newer X86 processors include custom
instructions.
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WHAT IS IN A RIJNDAEL ROUND ?

Each round consists of four steps applied to 4x4 square of bytes:

• xor in a key (specific to each round, derived from user key by a formula)

• apply a substitution using an S-box to each byte

• shift each row by a different amount

• mix contents of columns using a combination of shifts and xors.

Note: all these steps (and sbox) are invertible.

Best short-cut attack on 128-bit version that recovers key (chosen
ciphertext) is O(2126), almost as slow as brute force O(2128).

Happily, Rijndael can be extended to larger key sizes.
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ELECTRONIC CODE BOOK

Important issue with block ciphers: what to do on longer messages?

• ECB is simplest approach: each n-bit block is independently using the
same key

• not very secure: just a substitution cipher with alphabet of n-bit strings
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CIPHER BLOCK CHAINING

• Each block of plaintext is xor’ed with preceding block of ciphertext
before encryption:

(from Ross Anderson, Security Engineering)

• secure against passive (no injection) attacks

• not so secure against chosen plaintext attacks
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PUBLIC KEY CRYPTOGRAPHY

Uses two keys, one public and one secret.

D(sk,E(pk,M)) = M

Receiver publishes their public key.

n participants need only n (pairs of) keys

Security is based on notion of trapdoor function:

(from Tom Ristenpart)

Existence of these functions is based on mathematical computation
problems that are believed to be hard.
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RSA (R IVEST/SHAMIR /ADLEMAN ) ALGORITHM

Proposed in 1979.

• Designers won 2002 Turing Award

• Very similar work was developed by Britain’s GCHQ ca. 1970 — but
never published (or used).

Widely used in protocols, especially to establish shared keys for cheaper
protocols.

1000X slower than DES and harder to implement

Basic Idea:

• Treat plaintext as a large binary number.

• Encrypt by modular exponentiation (repeated multiplication modulo a
number).

• Security is based on assumed difficulty of factoring large numbers.
Largest number known to have been factored by general-purpose
algorithm is 768 bits. RSA typically uses 1024-2048 bits.
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NUMBER THEORY PRELIMINARIES

Recall definition of mod operator:
a mod b = remainder (“residue”) when a is divided by b

Have:
• (a+ b) mod n = ((a mod n) + (b mod n))mod n

• ab mod n = ((a mod n)(b mod n)) mod n

Define “congruence mod n” as follows:
• a ≡ b(mod n) iff a = b+ kn for some integer k

Will make use of the idea of multiplicative inverse modulo n:
a−1 is the number in {0, . . . , n− 1} such that a ∗ a−1 ≡ 1(mod n).

The multiplicative inverse exists whenever a and n are relatively prime
(have no common factors other than 1). Examples:

• 2−1 = 3(mod 5) because 2 ∗ 3 ≡ 1(mod 5).

• 4−1 = 4(mod 5) because 4 ∗ 4 ≡ 1(mod 5).

• 3−1 = 7(mod 10) because 3 ∗ 7 ≡ 1(mod 10).
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RSA KEY GENERATION

• Choose large distinct primes p and q

• Set n = p ∗ q

• Choose a random encryption exponent e such that e and
(p− 1) ∗ (q − 1) are relatively prime

• Derive decryption exponent d as d = e−1(mod ((p− 1) ∗ (q − 1))). (This
exists because e and (p− 1) ∗ (q − 1) are relatively prime).

• Public key pk = (e, n)

• Secret key sk = (d, n)

• Now forget p and q; we don’t need them anymore and we must not
accidentally disclose them!
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RSA ENCRYPTION AND DECRYPTION

Given message m < n

• (break up m into parts smaller than n if necessary)

E((e, n),m) = me mod n

D((d, n), c) = cd mod n

Note that these are not cheap operations (even with some useful
shortcuts).
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EXAMPLE RSA

Choose p = 47,q = 71

• n = p ∗ q = 3337

• (p− 1) ∗ (q − 1) = 3220

• Choose e relatively prime with 3220: e.g. e = 79

• Public key is (79, 3337)

• Find d = 79−1 mod 3220 = 1019

• Private key is (1019, 3337)

To encrypt m = 688232687966683

• Break into chunks < 3337 : 688 232 687 966 683

• Encrypt: E((79, 3337), 688) = 68879 mod 3337 = 1570

• Decrypt: D((1019, 3337), 1570) = 15701019 mod 3337 = 688
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A LITTLE NUMBER THEORY

A (fairly) elementary fact in number theory (Euler’s generalization of
Fermat’s “little” theorem’) says that:

If m and n are relatively prime, then mφ(n) ≡ 1(mod n).

• where “Euler’s totient function” φ(n) = number of positive integers ≤ n

that are relatively prime to n.

[Proof omitted.]

Corollary: Suppose m and n are relatively prime and ed ≡ 1(mod φ(n))

for some e, d ≥ 1. Then we can write ed = 1 + hφ(n) for some
nonnegative integer h. So:

med ≡ m1+hφ(n) ≡ m(mφ(n))h ≡ m(mod n)
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WHY DOES RSA WORK?

In the RSA setting, we have n = pq for p, q prime. It is then easy to see
[proof omitted] that φ(n) = ((p− 1) ∗ (q − 1)), and so ed ≡ 1(mod φ(n))

(by definition of d).

Hence the corollary from the previous page applies:

med ≡ m1+hφ(n) ≡ m(mφ(n))h ≡ m(mod n)

So now suppose c = me mod n. Then:

cd mod n

= (me mod n)d mod n (defn)

= med mod n (arith)

= m mod n (by corollary∗)

= m (because m < n)

∗ a slightly different argument is needed if m and n are not relatively
prime (though this is highly unlikely in practice!)
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OTHER PUBLIC KEY SYSTEMS

Other results in number theory provide similar sources of (presumably)
hard problems.

Discrete Logarithms

For prime p, the set Zp = {0, 1, ...p− 1} with operations mod p form a
finite field with usual laws of arithmetic.

A “primitive root g modulo a prime p” is a number in Zp such that
{g0 mod p, g1 mod p, . . . , gp−1 mod p} = Zp. (We say g “generates” the
group Zp.)

For any primitive root g of a large prime p, the function

f(x) = gx mod p

is effectively a “one-way” function — that is, there is no computationally
efficient way to invert it (as far as we know).
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DIFFIE-HELLMAN KEY EXCHANGE

Protocol for obtaining a shared secret using public communication.

• Security based on difficulty of discrete logarithm problem.

• Used as basis for ElGamel public key protocol.

Method:

• Alice and Bob publicly agree on a large prime p and primitive root g.

• Alice chooses a secret value A; Bob chooses a secret value B.

• Alice send Bob gA mod p and Bob sends Alice gB mod p.

• The shared secret is gAB mod p.

• Alice and Bob can each easily calculate this by exponentiating (mod p)
the value they receive by their secret value.

• Eve the evil eavesdropper cannot do this easily (as far as we know). In
particular, Eve cannot extract A from gA mod p without solving the
discrete logarithm problem.

PSU CS491/591 F’12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 22


