CS491/591 Intro. to Computer Security
Fall 2012
Lecture on Cryptographic Primitives




INDUSTRIAL-STRENGTH CRYPTOI

e Shared key (symmetric) methods
¢ Private key (asymmetric) methods

e (Hash functions)

PSU CS491/591 F'12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH



SHARED KEY CRYPTOGRAPHY I

Sender and receiver share a key.

e Secret between the two of them.

e 1 participants require n? keys.

e How do they get the keys?

Typically these are block ciphers

e Encrypt blocks of plaintext into blocks of ciphertext

e Use combination of substutition and transposition in form of
SP-network.

e Networks needs to be wide enough, have enough rounds, and have
good S-box internal design.

PSU CS491/591 F'12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH



SP-NETWORK ARCHITECTURE I

NN

S-box S-box S-box

S-box

TTTTTT I T T T 1T T

PSU CS491/591 F'12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH




DES (DATA ENCRYPTION STANDARD)I

Standardized in 1976.

Security analyzed by NSA.

e Algorithm is public, but full design rationale is not.

e There were persistent worries about “back doors.”

Widely used in banking, government, and embedded applications.

Block size = 64 bits
Key length = 56 bits
Structured as 16-round Feistel cipher

Uses simple operators on (up to) 64 bit values.

Relatively simple and fast to implement in software and hardware.

PSU CS491/591 F'12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH



FEISTEL STRUCTUREI

Left half Right half

(from Ross Anderson, Security Engineering)

PSU CS491/591 F'12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH



FEISTELI

Important feature of Feistel: decrypt just by applying functions f; in
reverse order.

Proof. Have
L;=R,_
Rj=Lj1® fj(Rj—1)
Thus
Rj1 =L

Consequently the f; don’t need to be invertible; makes design easier.

PSU CS491/591 F'12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH



WHAT IS IN DES FEISTEL ROUND?I

e expansion, addition of key material, processing with ”S boxes”,
permutation

e box IS a 6-to-4 substitution table

e design is black art

The kinds of characteristics we want:

e No output should be close to a linear funcion of the inputs.

e If inputs differ in exactly one bit, output must differ in at least 2 bits.
e EfC.

In fact, DES S-boxes appear to work very well, but we don’t really know
why!

But DES is not very secure because key length is so short.
e By 1999, a distributed attack could break it in 22 hours.

Still used today, but typically using a triple repitition to get larger effective
key length (just a double repetition doesn’t help).

PSU CS491/591 F'12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH



AES (ADVANCED ENCRYPTION STANDARD)I

Result of public NIST competition.

Uses Rijndael algorithm, invented by a pair of Dutch cryptographers.
Adopted in 2002.

Used broadly in industry, ecommerce, government...

Blocksize = 128 hits
Keylength = 128, 192 or 256 bits
Rounds =10, 12, or 14

Fast on stock hardware, and newer X86 processors include custom
Instructions.

PSU CS491/591 F'12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH



WHAT IS IN A RIJNDAEL ROUND ? I

Each round consists of four steps applied to 4x4 square of bytes:

e XOr in a key (specific to each round, derived from user key by a formula)
e apply a substitution using an S-box to each byte

e shift each row by a different amount

e Mix contents of columns using a combination of shifts and xors.

Note: all these steps (and sbox) are invertible.

Best short-cut attack on 128-bit version that recovers key (chosen
ciphertext) is O(2!2%), almost as slow as brute force O(2!2%).

Happily, Rijndael can be extended to larger key sizes.

PSU CS491/591 F'12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 10



ELECTRONIC CODE BOOK I

Important issue with block ciphers: what to do on longer messages?

e ECB is simplest approach: each n-bit block is independently using the
same key
e NOt very secure: just a substitution cipher with alphabet of n-bit strings

Encrypted with ECB

Images courtesy of
http://en.wikipedia.org/wiki/Block_cipher_modes_of operation

PSU CS491/591 F'12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 11



CIPHER BLOCK CHAINING I

e Each block of plaintext is xor'ed with preceding block of ciphertext
before encryption:

Py Py P;
S
IV =6
l i l
Ex Ex Ex
e
G Cy Cs

(from Ross Anderson, Security Engineering)

e Secure against passive (no injection) attacks

e NOt SO secure against chosen plaintext attacks

PSU CS491/591 F'12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH



PUBLIC KEY CRYPTOGRAPHY I

Uses two keys, one public and one secret.
D(sk, E(pk,M)) =M

Receiver publishes their public key.

n participants need only n (pairs of) keys

Security is based on notion of trapdoor function:

easy given pk

e —
= —

hard given pk
easy given sk

(from Tom Ristenpart)

Existence of these functions is based on mathematical computation
problems that are believed to be hard.

PSU CS491/591 F'12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH

13



RSA (RIVEST/SHAMIR/ADLEMAN) ALGORITHM I

Proposed in 1979.
e Designers won 2002 Turing Award

e Very similar work was developed by Britain’'s GCHQ ca. 1970 — but
never published (or used).

Widely used in protocols, especially to establish shared keys for cheaper
protocols.

1000X slower than DES and harder to implement
Basic Idea:
e Treat plaintext as a large binary number.

e Encrypt by modular exponentiation (repeated multiplication modulo a
number).

e Security is based on assumed difficulty of factoring large numbers.
Largest number known to have been factored by general-purpose
algorithm is 768 bits. RSA typically uses 1024-2048 bits.

PSU CS491/591 F'12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 14



NUMBER THEORY PRELIMINARIES I

Recall definition of mod operator:
a mod b = remainder (“residue”) when « is divided by b

Have:
e (a+0b) modn = ((a modn)+ (b modn))mod n
e ab mod n = ((a mod n)(b mod n)) mod n

Define “congruence mod n” as follows:
e a = b(mod n) iff a = b+ kn for some integer k

Will make use of the idea of multiplicative inverse modulo n:
a~!is the numberin {0,...,n — 1} such that a x a=* = 1(mod n).

The multiplicative inverse exists whenever a and n are relatively prime
(have no common factors other than 1). Examples:

e 271 = 3(mod 5) because 2 * 3 = 1(mod 5).
¢ 4—1 = 4(mod 5) because 4 x 4 = 1(mod 5).
e 371 = 7(mod 10) because 3 * 7 = 1(mod 10).

PSU CS491/591 F'12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH

15



RSA KEY GENERATION I

e Choose large distinct primes p and q
eSetn=pxgq

e Choose a random encryption exponent e such that e and
(p—1)*(qg—1) are relatively prime

e Derive decryption exponent d as d = e~ (mod ((p — 1) * (¢ — 1))). (This
exists because e and (p — 1) x (¢ — 1) are relatively prime).

e Public key pk = (e, n)
e Secret key sk = (d,n)

e Now forget p and ¢; we don’t need them anymore and we must not
accidentally disclose them!

PSU CS491/591 F'12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 16



RSA ENCRYPTION AND DECRYPTIONI

Given message m < n

e (break up m into parts smaller than n if necessary)
E((e,n),m) =m*® modn

D((d,n),c) = c® mod n

Note that these are not cheap operations (even with some useful
shortcuts).

PSU CS491/591 F'12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH

17



EXAMPLE RSAI

Choose p =47, =71

oen =pxq= 3337

o (p—1)%(qg—1)=3220

e Choose e relatively prime with 3220: e.g. e = 79

e Public key is (79, 3337)

e Find d = 797! mod 3220 = 1019

e Private key is (1019, 3337)

To encrypt m = 688232687966683

e Break into chunks < 3337 : 688 232 687 966 683

e Encrypt: E((79, 3337), 688) = 688™ mod 3337 = 1570
e Decrypt: D((1019, 3337), 1570) = 157011 mod 3337 = 688

PSU CS491/591 F'12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH

18



A LITTLE NUMBER THEORY I

A (fairly) elementary fact in number theory (Euler’'s generalization of
Fermat’s “little” theorem’) says that:

If m and n are relatively prime, then m®™ = 1(mod n).

e Where “Euler’s totient function” ¢(n) = number of positive integers < n
that are relatively prime to n.

[Proof omitted.]

Corollary: Suppose m and n are relatively prime and ed = 1(mod ¢(n))
for some e, d > 1. Then we can write ed = 1 + h¢(n) for some
nonnegative integer h. So:

ed = mIthe() = m(m®(n))" = m(mod n)

m

PSU CS491/591 F'12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 19



WHY DOES RSA WORK? I

In the RSA setting, we have n = pq for p, ¢ prime. It is then easy to see
[proof omitted] that ¢(n) = ((p — 1) * (¢ — 1)), and so ed = 1(mod ¢(n))
(by definition of d).

Hence the corollary from the previous page applies:
me? = mIThe() = m(m?(n))* = m(mod n)

So now suppose ¢ = m® mod n. Then:

c® mod n
= (m® mod n)® mod n (defn)
= m* mod n (arith)
= mmodn (by corollary*)
= m (because m < n)

* a slightly different argument is needed if m and n are not relatively
prime (though this is highly unlikely in practice!)

PSU CS491/591 F'12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 20



OTHER PUBLIC KEY SYSTEMS I

Other results in number theory provide similar sources of (presumably)
hard problems.

Discrete Logarithms

For prime p, the set Z, = {0, 1, ...p — 1} with operations mod p form a
finite field with usual laws of arithmetic.

A “primitive root g modulo a prime p” is a number in Z, such that
{g" mod p,g' mod p,...,g°" ' mod p} = Z,. (We say g “generates” the

group Z,.)
For any primitive root g of a large prime p, the function
f(x) = g mod p

Is effectively a “one-way” function — that is, there is no computationally
efficient way to invert it (as far as we know).

PSU CS491/591 F'12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 21



DIFFIE-HELLMAN KEY EXCHANGEI

Protocol for obtaining a shared secret using public communication.

e Security based on difficulty of discrete logarithm problem.

e Used as basis for EIGamel public key protocol.

Method:

e Alice and Bob publicly agree on a large prime p and primitive root g.
e Alice chooses a secret value A; Bob chooses a secret value B.

e Alice send Bob ¢ mod p and Bob sends Alice ¢® mod p.

e The shared secret is ¢4 mod p.

e Alice and Bob can each easily calculate this by exponentiating (mod p)
the value they receive by their secret value.

e Eve the evil eavesdropper cannot do this easily (as far as we know). In
particular, Eve cannot extract A from g mod p without solving the
discrete logarithm problem.

PSU CS491/591 F'12 LECTURE ON CRYPTOGRAPHIC PRIMITIVES ANDREW TOLMACH 22



