CS 457/557: Functional
Languages

Lecture 8: I/O Actions in Haskell

Mark P Jones and Andrew Tolmach
Portland State University

Side-effects considered harmful

#® We define fst (x,y) = x

But is fst (print 1, print 2) the same as
print 17

Suppose that your C/C++ code calls a
function int f(int n); What might
happen?

Both purity and utility?

4 Sometimes we need our programs to
have effects on the real world
= reading, printing
= drawing a picture
= controlling a robot
= etc.

But “effectful” operations don’t mix
well with Haskell’s lazy evaluation

= Evaluation order is complex and hard to
predict

Example: Tracing

The Debug.Trace module provides a
way to wrap an expression with a
string to be printed when that
expression is evaluated
m trace :: String -> a —-> a

Useful for “stick in a print statement”
style of debugging

@ Oris it?

What gets printed?

X = trace "there" (x+1)
g = X + trace "there" 1
h = 1f x > 0
then trace "there" 1
else 2
f (trace "here" 1)
g (trace "here" 1)
h (trace "here" 1)

Violating assumptions of
“computation by calculation”

cC = X + X
where x = trace "x" (length "abc")
c = trace "x" (length "abc") +

trace "x" (length "abc")

Question

If functional programs don' t
have any side-effects, then
how can we ever do anything
useful?

Answer

Functional program can
evaluate to an IO action that
performs IO when executed

We use the type system to
separate “pure values” from
“worldly actions”

8

10 Actions

action ' TO a

@ An “I0 action” is a value of type IO a
a is the type of values that it produces

9

Built in IO Actions

The "unit” type:
getChar :: I0 Char data () = ()
getLine :: IO String
getContents :: IO String ,Z;///
putChar :: Char -> TO ()
putStr :: String -> I0 ()
putStrLn :: String -> I0 ()
print :: Show a => a -> I0 ()
readFi1le :: String -> IO String

writeFile :: String -> String -> IO ()

10

... and beyond the prelude...

10
10

10
10
10
10
10

[FilePath]
[FilePath]

Bool
Bool

()
[FilePath]
[FilePath]

String -> IO String

getDirectoryContents :: FilePath ->
getDirectoryPaths :: FilePath ->
getCurrentDirectory :: IO FilePath
getHomeDirectory :: IO FilePath
doesFileExist FilePath ->
doesDirectoryExist :: FilePath ->
createDirectory :: FilePath ->
getFiles FilePath ->
getDirectories FilePath ->
getArgs IO [String]
getProgName TO String
getEnv

runCommand

etc., etc.

String -> FilePath -> I0 ExitCode

11

Combining IO Actions

action ' TO a
Y IO Db
function a->I0b

If action :: IO a and function ::a->1I0Db
then do x <- action
function x 10 Db 1

Example

€ Write code that reads and echoes a character,
and return a Boolean indicating if it was a newline

@ Primitives:
In scope in
getChar :: IO Char remainder of do
block

putChar :: Char -> I0 ()
® Code: echo :: IO Qgg%éjﬁﬁi///

echo = do ¢ <- getChar

putChar c
return (c == '\n'")

introduces a sequence of 10
actions

13

The return operator

return :: a —> 10 a

An I/O action that returns its input with
no actual I/O behavior

Some laws:

do {x <- return e; £ x} = £ e
do {x <= e; return x} = e

14

Typing details for do

:: 10 Char
echo :: //44§//
echo = do |c]|<- getCéii%éi;JO()
putChar c

return (¢ == '\n'")
IO () is typical type

\\\\Qihititiﬁ::IC)Bool
for actions without a

v<- binding Type of last action
determines type of
entire do sequence 15

Do notation and Layout

Haskell allows the programmer to use
layout rather than explicit punctuation to
indicate program structure.

If you use layout:
= All characters have the same width
= Tab stops every 8 characters (but avoid tabs!)
= All generators must start in the same column

= Generators may be spread across multiple lines,
but continuations require further indentation

16

Do notation and Layout

Haskell allows the programmer to use
layout rather than explicit punctuation to
indicate program structure.

do x <- f vy }x{ do x <- f y return (g x)
return (g x)
Last generator must be an expression
do x <- f vy (do x <- f y) return (g x)
return (g x) }x(
do x <- f vy do x <- f vy
if x then g x X (if x then g x)

1 h 1 h
e-se 8 (eise x) % Syntax error(s)

17

Do notation and Layout

Haskell allows the programmer to use
layout rather than explicit punctuation to
indicate program structure.

do x <- f vy \/
return)

(g x

do x <- f vy
ifxthengx\/

else h x

18

Using Explicit Layout

Haskell also allows the programmer to use
explicit punctuation instead of layout.

do { gen, ; gen,; ... ; gen.; expr }

do { x <- £ vy ; \// do { x <- £
)}

return (g x y ; return

(9
do { x <- f vy X) \//
; return (g x) \// }
}

do { x <- f vy; return (g x) }

v

19

When are IO actions performed?

A value of type IO a is an action, but it is still just
a value; it will only have an effect when it is
performed.

The value of a Haskell program is the value of the
variable main in the module Main. That value
must have type IO t. The associated action will be
performed when the whole program is run.

There is no other way to perform an action (well,
almost no other way)

20

Treatment of IO in GHCi

If you write an expression e of type IO t at the
ghci prompt, it will be performed immediately.

In addition, the result value of type t will be
displayed, provided that t is an instance of Show
and t is not ().

® Example:

*Main> echo
a
abalse
*Main>
21

Terminal Input

getChar :: IO Char

The action getChar reads a single
character from the terminal

Note that this action takes no
parameters and does not look like a
function (indeed, it is a constant
action), but each time it is performed it
will return a new character!

22

Recursive Actions

Action getLine reads characters up to
(but not including) a newline.

getLine :: IO String
getlLline =
do ¢ <- getChar
if ¢ == '"\n' then
return ""
else
do 1 <- getLine
return (c:1)

get a character

1if it is a newline

then return empty string
otherwise

recurse for rest of line
and return entire line

23

Mapping IO Actions

mapM :: (a —-> I0 Db)
-> [a] -> IO [Db]

An action mapM f takes a list of inputs of
type [a] as its input, runs the action f on
each element in turn, and produces a list
of outputs of type [b]

25

Mapping IO Actions

mapM :: (a —-> IO Db)
-> [a] => IO()

An action mapM_ f takes a list of inputs

of type [a] as its input, runs the action f
on each element in turn, and produces a

result of type () as output

26

Defining mapM and mapM_

mapM
mapM
mapM

mapM
mapM f
mapM f

f
f

[]

(X:X83)

[]

(X:x3)

(a => I0 b) -> [a] -> IO ()
return ()
do £ x

mapM f xs

(a =>I0 b) -> [a] -> I0 [b]
return |[]
do y <- f x

yvs <- mapM f xs

return (y:ys)

27

Sequencing IO Actions

sequence :: [I0O a] —-> IO [a]

An action sequence as takes a list of IO
actions IO a as its input, runs the actions
in sequence, and returns the list of
results as a single action

mapM f = sequence . map t
mapM f xs = sequence [f x | x <- Xs]

28

Terminal Output

putChar :: Char -> IO ()

An action putChar c takes a Char input

and outputs it on the terminal producing
a result of type ()

Example: do {putChar ’h’; putChar 'i’}

29

Terminal Output

putStr :: String —-> I0 ()
putStrLn :: String -> IO ()

An action putStr s takes a String input
and outputs it on the terminal:

putStr = mapM putChar

putStrLn s does the same thing but adds
a trailing new line

30

Terminal Output

print :: Show a => a -> I0 ()

A print action takes a value whose type
iS in Show and outputs a corresponding
String on the terminal

print x = putStrLn (show Xx)

31

Side-effects considered harmful

#® We define fst (x,y) = x

But is fst (print 1, print 2) the same as
print 17

Suppose that your C/C++ code calls a
function int f(int n); What might
happen?

32

Side-effects tamed!

#® We define fst (x,y) = X

But is fst (print 1, print 2) the same as
print 17

Suppose that your Haskell code calls a
function f :: Int -> Int. What might
happen?

33

Side-effects tamed!

print 1

NS

Evaluation

values of type IO ()

A4
effects

Execution

A

34

Visualizing a File System

data FileSystem = File FilePath
| Folder FilePath [FileSystem]
| Foldep FilePath

deriving Show

instance Tree FileSystem where ..

Instance LabeledTree FileSystem where ..

45

... continued

getFileSystemDir :: Int -> FilePath -> FilePath -> IO FileSystem
getFileSystemDir n path name
| n < 1 = return $ Foldep name
| otherwise = do fs <- getDirectoryContents path
let fs' = filter (not . dotFile) f£fs
fss <- mapM (getFileSystemIn (n-1) path) fs'

return $ Folder name fss

getFileSystemIn :: Int -> FilePath -> FilePath -> IO FileSystem
getFileSystemIn n parent child
= do b <- doesDirectoryExist path
1f b then
getFileSystemDir n path child
else
return $ File child

where path = parent </> child
46

Visualizing a FileSystem

dotFileSystem :: Int -> FilePath -> String -> IO ()
dotFileSystem n name dotfile =
do fs <- getFileSystem n name
toDot dotfile fs

getFileSystem :: Int -> FilePath -> IO FileSystem
getFileSystem n name = getFileSystemDir n name name

Treedot.Ihs @ @ @ @ w fracModules/ @
GraphicalFractals.Ihs TextFractals.Ihs @ Regions.lhs w PPMFractals.lhs
47

Simple File I/O
#® Read contents of a text file:

readFile :: FilePath -> IO String

@ Write a text file:
writeFile :: FilePath -> String -> 10 ()

4 Example: Number lines

numLines inp out
= do t <- readFile inp
(writeFile out . unlines . f . lines) t

f = zipWith (\n s -> show n ++ s) [1..]

48

Handle-based File I/O

import IO

stdin, stderr, stdout :: Handle

openFile :: FilePath -> IOMode -> IO Handle
hGetChar :: Handle -> IO Char

hPutChar :: Handle -> Char -> I0 ()

hClose :: Handle -> 10 ()

49

Time

import Data.Time

getCurentTime :: IO UTCTime
getCurrentTimeZone :: IO TimeZone
getZonedTime :: IO ZonedTime

+ lots of pure operations for working with values
of these types ...

For example: do { t <- getZonedTime; print t}

50

References

import Data.IORef
data IORef a = ...
newlIORef :: a-> 10 (IORef a)

readIORef :: IORef a -> IO a

writeIORef :: IORef a -> a -> 10 ()

51

Just Because You Can ...

gauss =do count <- newIORef 0
total <- newIORef 0
let loop
= do t <- readIORef total
C <- readIORef count
if (c>=11)
then return t
else dowriteIORef total (t+c¢)
writeIORef count (c+1)
loop
loop

52

It doesn’t mean you should!

gauss :: IO Int
gauss = return (sum [1..10])

@ You can write “C code” in Haskell

@ But it's better to write C code in C and
Haskell code in Haskell

53

Foreign Functions

A (now standard) Foreign Function Interface
makes it possible to call C code from Haskell:

foreign import ccall
putChar :: Char -> 10 ()

foreign import ccall “putchar”
putChar :: Char -> 10 ()

foreign import ccall “intr.h enableInterrupts”
enablelInterrupts :: 10 ()

foreign import ccall “io.h inb”
inB :: Port -> IO Word8

54

... continued

... or Haskell code from C:
foreign export ccall foo :: Int -> Int

Note that you can also import functions
without assuming an IO result:

foreign import ccall sin :: Float -> Float

(But then there is an obligation on the
programmer to justify/prove safety ...)

55

Interfacing to Other Libraries

@ Primitives for graphical programming:
mkWindow :: Int -> Int -> 10 Window

setPixel :: Window -> (Int,Int) -> RGB -> IO ()
@ Primitives for network programming:
socket :: Family -> SocketType
-> ProtocolNumber -> IO Socket
accept :: Socket -> IO (Socket, SockAddr)
sendTo :: Socket -> String -> SockAddr
-> [O Int

recvFrom :: Socket -> Int
-> [0 (String, Int, SockAddr)

¢ Etc...

56

There is No Escape!

There are plenty of ways to construct
expressions of type IO t

4 Once a program is “tainted” with IO,
there is no way to “shake it off”

@ For example, there is no primitive of
type IO t->t that runs a program
and returns its result

57

The Real Primitives

The do notation is just “syntactic sugar” for
a sequence of applications of a particular
primitive function written >>= and called

“bind”

The fundamental primitives are:
(>>=) :I0a->@->I0b)->1I0Db
return ::a->10a

These can be used just like any other functions

58

The “bind” operator

(>>=) :: I0 a
-> (a -> I0 Db)
-> TO Db

p >>= qis an I/O action that runs p,
pipes the output into g, and runs the
resulting action ...

59

A special case of bind

(>>) :: IO a -> IO b -> I0 b

p >> qis an I/O action in which the
output of p is ignored by g

p > g = p >= \xX -> Qq

(p >> qg) > r = p >> (g >>r)

60

“do-notation” expands to >>=

For example:
do x, <-p;
Xn <= Py
g

IS equivalent to:
p; >>=\Xq ->

Py >>= \X, ->
g

61

“do-notation” without binders

The sequence
do p,
P>
Pn

IS equivalent to:
P, >>p, >> ... >>p,

Of course, sequences with and without
binders can be freely intermixed

62

IO Actions are monads

IO actions turn out to be a special case of a
more general structure called a monad

Bind (>>=), return, and do-notation all
work for arbitrary monads

= Via a type class!

#® We will explore monads in more generality
later in the course

63

The Haskell Logo

Further Reading

@ “Tackling the Awkward Squad:
monadic input/output, concurrency,
exceptions, and foreign-language calls
in Haskell” Simon Peyton Jones, 2005

@ “Imperative Functional Programming”
Simon Peyton Jones and Philip Wadler,
POPL 1993

65

