CS 457/557: Functional Languages

Lecture 5: Algebraic Datatypes

Mark P Jones and Andrew Tolmach Portland State University

Algebraic Datatypes

- Booleans and Lists are both examples of "algebraic datatypes"
- Any value of an algebraic datatype can be built using just the declared set of constructors.
 - Every Boolean value can be constructed using either False or True
 - Every list can be described using (a combination of) [] and (:)
- Every value of an algebraic type can be matched by some combination of constructors

In Haskell Notation

data Bool = False | True introduces:

- A type, Bool
- A constructor function, False :: Bool
- A constructor function, True :: Bool

Prelude definition uses [] and (:)

data List a = Nil | Cons a (List a) introduces

- A type, List t, for each type t
- A constructor function, Nil :: List a
- A constructor function, Cons :: a -> List a -> List a

More Enumerations

introduces:

- A type, Rainbow
- A constructor function, Red :: Rainbow
- ...
- A constructor function, Violet :: Rainbow

Every value of type Rainbow is one of the above seven colors

More Recursive Types

introduces:

- Two types, Shape and Transform
- Circle :: Radius -> Shape
- Polygon :: [Point] -> Shape
- Transform :: Transform -> Shape -> Shape

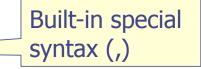
...

More Parameterized Types

data Maybe a = Nothing | Just a introduces:

- A type, Maybe t, for each type t
- A constructor function, Nothing :: Maybe a
- A constructor function, Just :: a -> Maybe a

data Pair a b = Pair a b introduces



- A type, Pair t s, for any types t and s
- A constructor function Pair :: a -> b -> Pair a b

General Form

Algebraic datatypes are introduced by top-level definitions of the form:

data T
$$a_1 ... a_n = c_1 | ... | c_m$$

where:

- T is the type name (must start with a capital letter)
- a₁, ..., a_n are (distinct) (type) arguments/parameters/ variables (must start with lower case letter) (n≥0)
- Each of the c_i is an expression F_i t₁ ... t_k where:
 - t₁, ..., t_k are type expressions that (optionally) mention the arguments a₁, ..., a_n
 - ◆ F_i is a new constructor function F_i :: t₁ -> ... -> t_p -> T a₁ ... a_n
 - The <u>arity</u> of F_i , $k \ge 0$

Quite a lot for a single definition!

Pattern Matching

- In addition to introducing a new type and a collection of constructor functions, each data definition also adds the ability to <u>pattern match</u> over values of the new type
- For example, given

data Maybe a = Nothing | Just a then we can define functions like the following:

```
orElse :: Maybe a -> a -> a

Just x `orElse` y = x

Nothing `orElse` y = y
```

Pattern Matching & Substitution

- The result of a pattern match is either:
 - A failure
 - A success, accompanied by a substitution that provides a value for each of the values in the pattern
- Examples:
 - [] does not match the pattern (x:xs)
 - [1,2,3] matches the pattern (x:xs) with x=1 and xs=[2,3]

Patterns

More formally, a pattern is either:

- An identifier
 - Matches any value, binds result to the identifier
- An underscore (a "wildcard")
 - Matches any value, discards the result
- lacktriangle A <u>constructed pattern</u> of the form C p_1 ... p_n , where C is a constructor of arity n and p_1 , ... p_n are patterns of the appropriate type
 - Matches any value of the form C e₁ ... e_n, provided that each of the e_i values matches the corresponding p_i pattern.

Other Pattern Forms

For completeness:

- "Sugared" constructor patterns:
 - Tuple patterns (p₁,p₂)
 - List patterns [p₁, p₂, p₃]
 - Strings, for example: "hi" = ('h' : 'i' : [])
- Numeric Literals:
 - Can be considered as constructor patterns, but the implementation uses equality (==) to test for matches
- "as" patterns, id@pat; lazy patterns, ~pat; and labeled patterns, C{I=x}

Function Definitions

In general, a function definition is written as a list of adjacent equations of the form:

$$f p_1 ... p_n = rhs$$

where:

- f is the name of the function that is being defined
- \mathbf{p}_1 , ..., \mathbf{p}_n are patterns, and rhs is an expression
- All equations in the definition of f must have the same number of arguments (the "arity" of f)

... continued

Given a function definition with m equations:

```
f p_{1,1} ... p_{n,1} = rhs_1

f p_{1,2} ... p_{n,2} = rhs_2

...

f p_{1,m} ... p_{n,m} = rhs_m
```

The value of $f e_1 \dots e_n$ is $S rhs_i$, where i is the smallest integer such that the expressions e_j match the patterns $p_{j,i}$ and S is the corresponding substitution.

Guards, Guards!

A function definition may also include guards (Boolean expressions):

$$f p_1 ... p_n | g_1 = rhs_1 | g_2 = rhs_2 | g_3 = rhs_3$$

- An expression f e₁ ... e_n will only match an equation like this if all of the e_i match the corresponding p_i and, in addition, at least one of the guards g_i is True
- In that case, the value is S rhs_j, where j is the smallest index such that g_i is True
- (The prelude defines otherwise = True :: Bool for use in guards.)

Where Clauses

A function definition may also have a where clause:

$$f p_1 \dots p_n = rhs$$

where decls

This behaves like a let expression:

$$f p_1 \dots p_n = let decls in rhs$$

Except that where clauses can scope across guards:

f
$$p_1 ... p_n$$
 | $g_1 = rhs_1$
| $g_2 = rhs_2$
| $g_3 = rhs_3$
| **where** decls

Variables bound here in decls can be used in any of the g_i or rhs_i
15

Example: filter

Example: Binary Search Trees

```
data Tree
                  = Leaf | Fork Tree Int Tree
                  :: Int -> Tree -> Tree
insert
insert n Leaf = Fork Leaf n Leaf
insert n (Fork I m r)
   | n <= m = Fork (insert n l) m r
| otherwise = Fork l m (insert n r)
lookup
          :: Int -> Tree -> Bool
lookup n Leaf = False
lookup n (Fork I m r)
       n < m = lookup n l
       n > m = lookup n r
       otherwise = True
```

Example: Folds on Trees

Case Expressions

Case expressions can be used for pattern matching:

```
case e of p_1 -> e_1 p_2 -> e_2 ... p_n -> e_n
```

Equivalent to:

```
let f p_1 = e_1

f p_2 = e_2

...

f p_n = e_n

in f e
```

... continued

• Guards and where clauses can also be used in case expressions:

If Expressions

If expressions can be used to test Boolean values:

if e then e₁ else e₂

Equivalent to:

```
case e of
```

```
True -> e_1
```

False $-> e_2$

Summary

- Algebraic datatypes can support:
 - Enumeration types
 - Parameterized types
 - Recursive types
 - Products (composite/aggregate values); and
 - Sums (alternatives)
- Type constructors, Constructor functions, Pattern matching
- Why "algebraic"? More to come...