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Algebraic Datatypes

€ Booleans and Lists are both examples of
“algebraic datatypes”

€ Any value of an algebraic datatype can be built
using just the declared set of constructors.

= Every Boolean value can be constructed using either
False or True

= Every list can be described using (a combination of) []
and (:)

€ Every value of an algebraic type can be matched
by some combination of constructors



In Haskell Notation

data Bool = False | True
introduces:

= A type, Bool

= A constructor function, False :: Bool p—
= A constructor function, True :: Bool definition uses
[]and (3)

data List a = Nil | Cons a (List a)
introduces

= Atype, Listt, for each type t
= A constructor function, Nil :: List a

= A constructor function, Cons :: a -> List a -> List a
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4 Built-in special syntax [...]




More Enumerations

data Rainbow = Red | Orange | Yellow
| Green | Blue | Indigo | Violet

introduces:
= A type, Rainbow
= A constructor function, Red :: Rainbow

= A constructor function, Violet :: Rainbow

Every value of type Rainbow is one of the above
seven colors



More Recursive Types

data Shape = Circle Radius
| Polygon [Point]
| Transform Transform Shape

data Transform
= Translate Point
| Rotate Angle
| Compose Transform Transform

introduces:
= Two types, Shape and Transform
= Circle :: Radius -> Shape
= Polygon :: [Point] -> Shape
= Transform :: Transform -> Shape -> Shape



More Parameterized Types

data Maybe a = Nothing | Just a

introduces:
= A type, Maybe t, for each type t
= A constructor function, Nothing :: Maybe a
= A constructor function, Just :: a -> Maybe a

‘ Built-in special

data Pairab =Pairab _ syntax (,)

introduces

= A type, Pair ts, for any types t and s
s A constructor function Pair ::a->b -> Pairab
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General Form

Algebraic datatypes are introduced by top-level definitions of
the form:

dataTa,..a,=¢|..|c,
where:
= T is the type name (must start with a capital letter)

= 3, ..., 4, are (distinct) (type) arguments/parameters/
variables (must start with lower case letter) (n=0)
= Each of the ¢ is an expression F; t, ... t, where:

*ty, .., T aretype expressions that (optionally) mention the
arguments ay, ..., a,

+ F,is a new constructor function F; i1 t; -> ... ->t,->Ta, ... a,
+ The arity of F, k=0

Quite a lot for a single definition!



Pattern Matching

@ In addition to introducing a new type and a
collection of constructor functions, each data
definition also adds the ability to pattern match
over values of the new type

@ For example, given
data Maybe a = Nothing | Just a
then we can define functions like the following:

orElse :: Maybea->a->a
Justx orElse’ y = x
Nothing orElse” y =y



Pattern Matching & Substitution

@ The result of a pattern match is either:
= A failure

= A success, accompanied by a substitution that
provides a value for each of the values in the
pattern

® Examples:
= [] does not match the pattern (x:xs)

= [1,2,3] matches the pattern (x:xs) with x=1
and xs=[2,3]



Patterns

More formally, a pattern is either:

€ An identifier
= Matches any value, binds result to the identifier

€ An underscore (a “wildcard”)
= Matches any value, discards the result

@ A constructed pattern of the form C p, ... p,,,
where C is a constructor of arity n and py, ... ,p,
are patterns of the appropriate type

= Matches any value of the form C e, ... e,, provided that
each of the g, values matches the corresponding p;
pattern.
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Other Pattern Forms

For completeness:
@ “Sugared” constructor patterns:

= Tuple patterns (p4,p,)

= List patterns [py, p,, Ps]

s Strings, for example: "hi" = (*h’ : " : [])
€ Numeric Literals:

= Can be considered as constructor patterns, but
the implementation uses equality (==) to test
for matches

& “as’ patterns, id@pat; lazy patterns, ~pat; and
labeled patterns, C{l=x}
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Function Definitions

@ In general, a function definition is written as a list
of adjacent equations of the form:

fp;...p, =rhs
where:
= f is the name of the function that is being
defined

= Py, ..., P, @re patterns, and rhs is an expression

@ All equations in the definition of f must have the
same number of arguments (the “arity” of f)
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. continued

@ Given a function definition with m equations:

fp1,1 R rhs,
f P12 Pn2 = rhs,

f Pim - Pom = rhs,,

@ The value of f e, ... e, is S rhs;, where i is the
smallest integer such that the expressions €;
match the patterns p;; and S is the correspondlng
substitution.
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Guards, Guards!

@ A function definition may also include guards
(Boolean expressions):

fp;..p, | g, =rhs,

g, = rhs,

g3 — I"]S3

@ An expression f e, ... e, will only match an
equation like this if all of the e, match the

corresponding p; and, in addition, at least one of
the guards g; is True

@ In that case, the value is S rhs,, where j is the
smallest index such that g; is True

@ (The prelude defines otherwise = True :: Bool for
use in guards.) 14




Where Clauses

@ A function definition may also have a where clause:

fp;..p,=rhs
where decls

@ This behaves like a let expression:
fp;... p, = let decls in rhs
@ Except that where clauses can scope across

guards:
fp;... P, g, = rhs,
gz — r152
g3 — I”]S3
where decls

€ Variables bound here in decls can be used in any of
the g; or rhs, 15



Example: filter

fi
fi
fi

ter
ter
ter

D []

D (X:XS)

D X
| otherwise
where rest = filter p xs

:: (@ -> Bool) -> [a] -> [@]

=[]

= X : rest
= rest
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Example: Binary Search Trees

data Tree = Leaf | Fork Tree Int Tree
insert :: Int -> Tree -> Tree
insert n Leaf = Fork Leaf n Leaf
insert n (Fork | m r)
| n<=m = Fork (insertn ) mr
| otherwise = Fork I m (insert n r)
lookup :: Int -> Tree -> Bool
lookup n Leaf = False
lookup n (Fork | m r)
n<m = lookup n |
n>m = lookup nr
otherwise = True

17



Example: Folds on Trees

foldTree ::t-> (t->Int->t->t)-> Tree->t
foldTree leaf fork Leaf = leaf
foldTree leaf fork (Fork | n r)
= fork (foldTree leaf fork I) n (foldTree leaf fork r)

sumTree :: Tree -> Int
sumTree = foldTree O (\lnr-> 1+ n +r)

heightTree :: Tree -> Int
heightTree = foldTree O (\| _r->max|r + 1)
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Case Expressions

@ (Case expressions can be used for pattern
matching:
case e of
P1-> €&
Py -> €

pn -> €,
€ Equivalent to:

letfp, = e
fp,=¢e

- fpa=¢,
infe
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... continued

€ Guards and where clauses can also be used
IN case expressions:

filter p xs = case xs of
[] -> []
(X:xs) | p X -> X:YS
| otherwise -> ys
where ys = filter p xs
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If Expressions

@ If expressions can be used to test Boolean
values:
if e then e, else e,

€ Equivalent to:

case e of
True -> e,
False -> e,
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Summary

@ Algebraic datatypes can support:
= Enumeration types
= Parameterized types
= Recursive types
= Products (composite/aggregate values); and
= Sums (alternatives)

@ Type constructors, Constructor functions, Pattern
matching

® Why “algebraic”? More to come...
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