
1

CS 457/557: Functional
Languages

Lecture 2: First Examples

Mark P Jones

Portland State University

2

Expressions Have Types
 The type of an expression tells you what
kind of value you might expect to see if you
evaluate that expression

 In Haskell, read “::” as “has type”

 Examples:
!  1 :: Int, 'a' :: Char, True :: Bool, 1.2 :: Float, …

 You can ask ghci for the type of an
expression: :t expr

3

Pairs
 A pair packages two values into one

 (1, 2) ('a', 'z') (True, False)

 Components can have different types
 (1, 'z') ('a', False) (True, 2)

 The type of a pair whose first component is
of type A and second component is of type
B is written (A,B)

 What are the types of the pairs above?

4

Operating on Pairs

  There are built-in functions for
extracting the first and second
component of a pair:

!  fst (True, 2) = True
! snd (0, 7) = 7

  Is the following property true?
For any pair p, (fst p, snd p) = p

5

Lists

 Lists can be used to store zero or more
elements, in sequence, in a single value:
[] [1, 2, 3] ['a', 'z'] [True, True, False]

 All of the elements in a list must have the
same type

 The type of a list whose elements are of
type A is written as [A]

 What are the types of the lists above?

6

Operating on Lists
  There are built-in functions for extracting
the head and the tail components of a list:

!  head [1,2,3,4] = 1
!  tail [1,2,3,4] = [2,3,4]

  Conversely, we can build a list from a given
head and tail using the “cons” operator:

!  1 : [2, 3, 4] = [1, 2, 3, 4]

  Is the following property true?
For any list xs, head xs : tail xs = xs

7

More Operations on Lists
 Finding the length of a list:
length [1,2,3,4,5] = 5

 Finding the sum of a list:
sum [1,2,3,4,5] = 15

 Finding the product of a list:
product [1,2,3,4,5] = 120

 Applying a function to the elements of a
list:
map odd [1,2,3,4] = [True, False, True, False]

8

Continued …
 Selecting an element (by position):
[1,2,3,4,5] !! 3 = 4

 Taking an initial prefix (by number):
take 3 [1,2,3,4,5] = [1,2,3]

 Taking an initial prefix (by property):
takeWhile odd [1,2,3,4,5] = [1]

 Checking for an empty list:
null [1,2,3,4,5] = False

9

More ways to Construct Lists

 Concatenation:
[1,2,3] ++ [4,5] = [1,2,3,4,5]

 Arithmetic sequences:
[1..10] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
[1,3..10] = [1, 3, 5, 7, 9]

 Comprehensions:
[2 * x | x <- [1,2,3,4,5]] = [2, 4, 6, 8, 10]
[y | y <- [1,2,3,4], odd y] = [1, 3]

10

Strings are Lists:

 A String is just a list of Characters
['w', 'o', 'w', '!'] = "wow!"
['a'..'j'] = "abcdefghij"
"hello, world" !! 7 = 'w'
length "abcdef" = 6
"hello, " ++ "world" = "hello, world"
take 3 "functional" = "fun"

11

Functions

 The type of a function that maps
values of type A to values of type B is
written A -> B

 Examples:
!  odd :: Int -> Bool
!  fst :: (a, b) -> a (a,b are type variables)
!  length :: [a] -> Int

12

Operations on Functions
 Function application. If f :: A -> B and x :: A,
then f x :: B

 Notice that function application associates
more tightly than any infix operator:

 f x + y = (f x) + y

 In types, arrows associate to the right:
 A -> B -> C = A -> (B -> C)

Example: take :: Int -> [a] -> [a]
 take 2 [1,2,3,4] = (take 2) [1,2,3,4]

13

Sections

 If ⊕ is a binary op of type A -> B -> C, then
we can use “sections”:
!  (⊕) :: A -> B -> C
!  (expr ⊕) :: B -> C (assuming expr::A)
!  (⊕ expr) :: A -> C (assuming expr::B)

 Examples:
!  (1+), (2*), (1/), (<10), …

14

Higher-order Functions

 map :: (a -> b) -> [a] -> [b]
!  map (1+) [1..5] = [2,3,4,5,6]

 takeWhile :: (a -> Bool) -> [a] -> [a]
!  takeWhile (<5) [1..10] = [1,2,3,4]

 (.) :: (a -> b) -> (c -> a) -> c -> b
!  (odd . (1+)) 2 = True

“composition”

15

Example:
Calculating Fractals

16

17

18

19

20

21

Calculating Fractals
  Based on Mark Jones’ article “Composing Fractals”
that was published as a “functional pearl” in the
Journal of functional Programming

  Flexible programs for drawing Mandelbrot and
Julia set fractals in different ways

 No claim to be the best/fastest fractal drawing
program ever created!

  Illustrates key features of functional programming
in an elegant and “calculational” style

  As it happens, no recursion!

22

Mandelbrot Sequences
type Point = (Float, Float)

next :: Point -> Point -> Point

next (u,v) (x,y) = (x*x-y*y+u, 2*x*y+v)

mandelbrot :: Point -> [Point]

mandelbrot p = iterate (next p) (0,0)

The source of all that
beauty & complexity!

Apply function repeatedly,
producing as many elements

as we like …

like complex numbers
p = u+iv z = x+iy

next p z =z2 + p

23

Converge or Diverge?
Fractals> mandelbrot (0,0)
 [(0.0,0.0),(0.0,0.0),(0.0,0.0),(0.0,0.0),(0.0,0.0),(0.0,0.0),

(0.0,0.0),^C{Interrupted}

Fractals> mandelbrot (0.1,0)
[(0.0,0.0),(0.1,0.0),(0.11,0.0),(0.1121,0.0),(0.1125664,0.0),

(0.1126712,0.0),(0.1126948,0.0) ^C{Interrupted}

Fractals> mandelbrot (0.5,0)
[(0.0,0.0),(0.5,0.0),(0.75,0.0),(1.0625,0.0),(1.628906,0.0),

(3.153336,0.0),(10.44353,0.0) ^C{Interrupted}

Fractals> mandelbrot (1,0)
[(0.0,0.0),(1.0,0.0),(2.0,0.0),(5.0,0.0),(26.0,0.0),(677.0,0.0),

(458330.0,0.0) ^C{Interrupted}

Fractals>

24

The Mandelbrot Set
  The Mandelbrot Set is the set of all points for
which the corresponding Mandelbrot sequence
converges

 How can we test for this?

 How can we visualize the results?

25

Testing for Membership
fairlyClose :: Point -> Bool

fairlyClose (u,v) = (u*u + v*v) < 100

inMandelbrotSet :: Point -> Bool
inMandelbrotSet p = all fairlyClose (mandelbrot p)

An almost arbitrary
constant

This could take a long time …

27

Pragmatics
  For points very close to the edge, it may take
many steps to determine whether the sequence
will converge or not.

  It is impossible to determine membership with
complete accuracy because of rounding errors

  And besides, the resulting diagram is really dull!

  If life gives you lemons … make lemonade!

28

Approximating Membership
fracImage :: [color] -> Point -> color

fracImage palette = (palette!!)
 . length

 . take n
 . takeWhile fairlyClose

 . mandelbrot

 where n = length palette – 1

Now we’re using a palette of multiple colors
instead of a monochrome membership!

But how are we going to render this?

Only looks at
initial prefix

A pipeline of
functions …

Grids

29

xmin xmax

ymin

ymax

δy =
(ymax-ymin)

(r-1)

δx= (xmax-xmin)
 (c-1)

c

r

30

Grids
type Grid a = [[a]]

grid :: Int -> Int -> Point -> Point -> Grid Point

grid c r (xmin,ymin) (xmax,ymax)
 = [[(x,y) | x <- for c xmin xmax]

 | y <- for r ymin ymax]

for :: Int -> Float -> Float -> [Float]
for n min max = take n [min, min+delta ..]

 where delta = (max-min) / fromIntegral (n-1)

Give meaningful
names to types

Capture
recurring pattern

List comprehensions

31

Some Sample Grids
mandGrid = grid 79 37 (-2.25, -1.5) (0.75, 1.5)

juliaGrid = grid 79 37 (-1.5, -1.5) (1.5, 1.5)

Names make it easier
to refer to previously

defined values!

32

Images
type Image color = Point -> color

sample :: Grid Point -> Image color -> Grid color

sample points image
 = map (map image) points

Allow for different
types of “color”

Functions are just
regular values …

33

Putting it all together
draw :: [color] ->

 Grid Point ->
 (Grid color -> pic) -> pic

draw palette grid render
 = render (sample grid (fracImage palette))

34

Example 1
charPalette :: [Char]

charPalette = " ,.`\"~:;o-!|?/<>X+={^O#%&@8*$"

charRender :: Grid Char -> IO ()
charRender = putStr . unlines

example1 = draw charPalette mandGrid charRender

35

 ,,

 ,,
 ,,

 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,................,,,,,,,,,,,,,,,,,
 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,..........`````........,,,,,,,,,,,,,,

 ,,,,,,,,,,,,,,,,,,,,,,,,,............```":|~""```.......,,,,,,,,,,,
 ,,,,,,,,,,,,,,,,,,,,,,,,.............`````"~:oOo-$~"``........,,,,,,,,
 ,,,,,,,,,,,,,,,,,,,,,,..............``````""~:;-?+-;~""````.......,,,,,,

 ,,,,,,,,,,,,,,,,,,,,..............```````"""~:?>$$$$&/|:~""````.......,,,,
 ,,,,,,,,,,,,,,,,,,,..............`````""""~~~~:;o^$$$$$$!;:~~""""```.....,,,

 ,,,,,,,,,,,,,,,,,,.............```````""~;$<<oo!$|$>{$$$$>/X!$o:::;=~"`.....,,
,,,,,,,,,,,,,,,,..........``````````""""~~;!{$$=$$$$$$$$$$$$$$$$|8=o"``.....,
,,,,,,,,,,,,,,........```````"""""""""~~:o||+$$$$$$$$$$$$$$$$$$$$$$O-:""``.....

,,,,,,,,,,,.........````"-o~~~~~~~~~~~:;o/$$$$$$$$$$$$$$$$$$$$$$$$$$|;;~```....
,,,,,,,,,........`````""~;X!--o!^-oo;;;-X$$$$$$$$$$$$$$$$$$$$$$$$$$$$$+~"``....

,,,,,,,.......``````"""~::o/$$#$$$$$$|!?$$$$$$$$$$$$$$$$$$$$$$$$$$$$$?&~"``....
,,,,,......``````"""~:;;;-$$$$$$$$$$$${{$$$$$$$$$$$$$$$$$$$$$$$$$$$$$!:"```....
,,,,....```""~"~~~~::;!=$+$$?:~"```....

,,,,..`{$*@8$$/o:~""```....
,,,,....```""~"~~~~::;!=$+$$?:~"```....

,,,,,......``````"""~:;;;-$$$$$$$$$$$${{$$$$$$$$$$$$$$$$$$$$$$$$$$$$$!:"```....
,,,,,,,.......``````"""~::o/$$#$$$$$$|!?$$$$$$$$$$$$$$$$$$$$$$$$$$$$$?&~"``....
,,,,,,,,,........`````""~;X!--o!^-oo;;;-X$$$$$$$$$$$$$$$$$$$$$$$$$$$$$+~"``....

,,,,,,,,,,,.........````"-o~~~~~~~~~~~:;o/$$$$$$$$$$$$$$$$$$$$$$$$$$|;;~```....
,,,,,,,,,,,,,,........```````"""""""""~~:o||+$$$$$$$$$$$$$$$$$$$$$$O-:""``.....

,,,,,,,,,,,,,,,,..........``````````""""~~;!{$$=$$$$$$$$$$$$$$$$|8=o"``.....,
 ,,,,,,,,,,,,,,,,,,.............```````""~;$<<oo!$|$>{$$$$>/X!$o:::;=~"`.....,,
 ,,,,,,,,,,,,,,,,,,,..............`````""""~~~~:;o^$$$$$$!;:~~""""```.....,,,

 ,,,,,,,,,,,,,,,,,,,,..............```````"""~:?>$$$$&/|:~""````.......,,,,
 ,,,,,,,,,,,,,,,,,,,,,,..............``````""~:;-?+-;~""````.......,,,,,,

 ,,,,,,,,,,,,,,,,,,,,,,,,.............`````"~:oOo-$~"``........,,,,,,,,
 ,,,,,,,,,,,,,,,,,,,,,,,,,............```":|~""```.......,,,,,,,,,,,
 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,..........`````........,,,,,,,,,,,,,,

 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,................,,,,,,,,,,,,,,,,,
 ,,

 ,,
 ,,

draw charPalette mandGrid charRender

36

Example 2
type PPMcolor = (Int, Int, Int)

ppmPalette :: [PPMcolor]

ppmPalette = [(((2*i) `mod` (ppmMax+1)), i, ppmMax-i)
 | i <- [0..ppmMax]]

ppmMax = 31 :: Int

ppmRender :: Grid PPMcolor -> [String]

ppmRender g = ["P3", show w ++ " " ++ show h, show ppmMax]
 ++ [show r ++ " " ++ show g ++ " " ++ show b

 | row <- g, (r,g,b) <- row]

 where w = length (head g)

 h = length g

draw ppmPalette mandGridHi ppmRender

38

An Imperative Approach
deltax = (xmax-xmin)/cols;

deltay = (ymax-ymin)/rows;

for (x=xmin; x<=xmax; x+=xdelta) {

 for (y=ymin; y<=ymax; y+=ydelta) {
 float px = 0, py = 0;

 for (i=1; i<colorsMax; i++) {

 (px, py) = (px*px-py*py+x, 2*px*py+y)

 if (px*px + py*py >= 100)
 break;

 }
 putchar(colors[i-1]);

 }

 putchar(’\n’);

}

39

An Imperative Approach
deltax = (xmax-xmin)/cols;

deltay = (ymax-ymin)/rows;

for (x=xmin; x<=xmax; x+=xdelta) {

 for (y=ymin; y<=ymax; y+=ydelta) {
 float px = 0, py = 0;

 for (i=1; i<colorsMax; i++) {

 newpx = px*px-py*py+x;

 newpy = 2*px*py+v;

 px = newpx;
 py = newpy;

 if (px*px + py*py >= 100)
 break;

 }

 putchar(colors[i-1]);

 }
 putchar(’\n’);

}

40

Down with Tangling!
  Changes to a program may require modifications
of the source code in multiple places

  The implementation of a program feature may be
“tangled” through the code

  Programs are easier to understand and maintain
when important changes can be isolated to a
single point in the code (and, perhaps, turned
into a parameter)

  A simpler example:
!  Calculate the sum of the squares of the numbers

from 1 to 10
!  sum (map square [1..10])

41

Summary
  An appealing, high-level approach to
program construction in which independent
aspects of program behavior are neatly
separated

  It is possible to program in a similar
compositional / calculational manner in
other languages …

 … but it seems particularly natural in a
functional language like Haskell …

