Mark P Jones -

Portland State ﬁniversity

¥
w

Expressions Have Types

@ The type of an expression tells you what
kind of value you might expect to see if you
evaluate that expression

@ In Haskell, read “::” as “has type”

@ Examples:
= 1::Int, '@ :: Char, True :: Bool, 1.2 :: Float, ...

@ You can ask ghci for the type of an
expression: :t expr

Pairs

@ A pair packages two values into one
(1, 2) (‘a', '2") (True, False)

€ Components can have different types
(1, '2"H (‘a’, False) (True, 2)

@ The type of a pair whose first component is
of type A and second component is of type
B is written (A,B)

@ What are the types of the pairs above?

Operating on Pairs

@ There are built-in functions for
extracting the first and second
component of a pair:

a fst (True, 2) = True
asnd (0,7) =7

@ [s the following property true?
For any pair p, (fstp,sndp) =p

Lists

@ Lists can be used to store zero or more
elements, in sequence, in a single value:

[1 [1,2,3] [4a,'7 [True, True, False]

@ All of the elements in a list must have the
same type

@ The type of a list whose elements are of
type A is written as [A]

@ What are the types of the lists above?

Operating on Lists

€ There are built-in functions for extracting
the head and the tail components of a list:

= head [1,2,3,4] =1
s tail [1,2,3,4] = [2,3,4]

@ Conversely, we can build a list from a given
head and tail using the “cons” operator:

ll:[2,3,4]=[1/21314]

@ Is the following property true?
For any list xs, head xs : tail xs = xs 6

More Operations on Lists

@ Finding the length of a list:
length [1,2,3,4,5] = 5

® Finding the sum of a list:
sum [1,2,3,4,5] = 15

@ Finding the product of a list:
product [1,2,3,4,5] = 120

@ Applying a function to the elements of a
list:
map odd [1,2,3,4] = [True, False, True, False]

7

Continued ...

@ Selecting an element (by position):
[112131415] 3 3 4

@ Taking an initial prefix (by number):
take 3 [1,2,3,4,5] = [1,2,3]

@ Taking an initial prefix (by property):
takeWhile odd [1,2,3,4,5] = [1]

@ Checking for an empty list:
null [1,2,3,4,5] = False

More ways to Construct Lists

€ Concatenation:
[11213] ++ [415] — [1I2131415]

@ Arithmetic sequences:
[1..10]1 =[1, 2,3,4,5,6, 7,8, 9, 10]
[1,3..10]1 =1, 3,5, 7, 9]

@ Comprehensions:
[2*x|x<-[1,2,3,45]] =2, 4,6,8, 10]
[y | y <- [1121314]1 odd Y] = []

9

Strings are Lists:

@A String is just a list of Characters
'w', o', 'w, T = "wow!”

'a'..'j'] = "abcdefghij”

"hello, world" I 7 ='W

length "abcdef” = 6

"hello, " ++ "world" = "hello, world"
take 3 "functional” = "fun"

10

Functions

@® The type of a function that maps
values of type A to values of type B is
written A -> B

@®Examples:
= 0dd :: Int -> Bool
s fst::(a, b)->a (a,baretype variables)
= length :: [a] -> Int

11

Operations on Functions

@ Function application. If f :: A-> B and x :: A,
thenfx::B

@ Notice that function application associates
more tightly than any infix operator:

fx+y = (fx)+vy

@ In types, arrows associate to the right:
A->B->C=A->(B->0)
Example: take :: Int -> [a] -> [&]
take 2 [1,2,3,4] = (take 2) [1,2,3,4]

12

Sections

@ If @ is a binary op of type A -> B -> C, then
We can use “sections”:
s (®) A->B->C
= (expr @) :: B-> C (assuming expr::A)
s (®expr):: A->C (assuming expr::B)

@ Examples:
. (1+)I (2*)1 (1/)1 (<1O)I

13

Higher-order Functions

®map :: (a->b)->[a] -> [b]
= map (1+) [1..5] =[2,3,4,5,6]

®takeWhile :: (a -> Bool) -> [a] -> [&]
= takeWhile (<5) [1..10] = [1,2,3,4]

®()::(@->b)->(c->a)->c->b
= (0odd . (1+)) 2 = True

\L“composition”} 14

Example:
Calculating Fractals

Calculating Fractals

@ Based on Mark Jones’ article “Composing Fractals”
that was published as a “functional pearl” in the
Journal of functional Programming

@ Flexible programs for drawing Mandelbrot and
Julia set fractals in different ways

@ No claim to be the best/fastest fractal drawing
program ever created!

@ Illustrates key features of functional programming
in an elegant and “calculational” style

@ As it happens, no recursion!
21

Mandelbrot Sequences

type Point = (Float, Float) next p z =72 + D
next :: Point -> Point -> Point
next (u,v) (x,y) = (x*x-y*y+u, 2*x*y+v)
like complex numbers The source of all that

p= u+iv z = X+iy beauty & COITIp'GXitY!
mandelbrot :: Point —-> [Point]

mandelbrot p = 1terate (next p) (0,0)

I

Apply function repeatedly,
producing as many elements
as we like ...

22

Converge or Diverge?

Fractals> mandelbrot (0,0)

[(0.0,0.0),(0.0,0.0),(0.0,0.0),(0.0,0.0),(0.0,0.0),(0.0,0.0),
(0.0,0.0),"C{Interrupted}

Fractals> mandelbrot (0.1,0)

[¢(0.0,0.0),(0.1,0.0), (0.212,0.0), (0.1121,0.0), (0.1125604,0.0),
(0.1126712,0.0), (0.1126948,0.0) "“C{Interrupted}

Fractals> mandelbrot (0.5,0)

[¢(0.0,0.0), ¢(6.5,0.0),(0.75,0.0), (1.0625,0.0), (1.628906,0.0),
(3.153336,0.0), (10.44353,0.0) "“C{Interrupted}

Fractals> mandelbrot (1,0)

[(0.0,0.0),(1.0,0.0), (2.0,0.0), (5.0,0.0), (26.0,0.0), (677.0,0.0),
(458330.0,0.0) ~C{Interrupted}

Fractals> 23

The Mandelbrot Set

€ The Mandelbrot Set is the set of all points for
which the corresponding Mandelbrot sequence
converges

® How can we test for this?

€ How can we visualize the results?

24

Testing for Membership

fairlyClose :: Point -> Bool
fairlyClose (u,v) = (u*u + v*v) < 100

™~

An almost arbitrary
constant

inMandelbrotSet :: Point -> Bool
inMandelbrotSet p = all fairlyClose (mandelbrot p)

)

This could take a long time ...

25

Pragmatics

@ For points very close to the edge, it may take
many steps to determine whether the sequence
will converge or not.

@ It is impossible to determine membership with
complete accuracy because of rounding errors

€ And besides, the resulting diagram is really dull!

@ If life gives you lemons ... make lemonade!

27

Approximating Membership

fracImage :: [color] -> Point -> color
fracImage palette = (palette!!)
1 Only looks at
. length et :
initial prefix
. take n

. takeWhile fairlyClose
A pipeline of . mandelbrot
functions ... where n = length palette - 1

Now we’ re using a palette of multiple colors
instead of a monochrome membership!

But how are we going to render this? 28

Grids

Ymax

Ymin

min

E)x= (Xmax'xmin)

(c-1)

maXx

29

Grids

Give meaningful
type Grid a = [[a]] names to types
grid :: Int -> Int -> Point -> Point -> Grid Point
grid ¢ r (xmin,ymin) (xmax,ymax)
= [[(x,y) | x <= for c xmin xmax]

___/////7 | v <= for r ymin ymax]

List comprehensions

for :: Int -> Float -> Float -> [Float]
for n min max = take n [min, min+delta ..]
where delta = (max-min) / fromIntegral (n-1)
T
Capture 30

recurring pattern

Some Sample Grids

mandGrid = grid 79 37 (-2.25, -1.5) (0.75, 1.5)

juliaGrid = grid 79 37 (-1.5, -1.5) (1.5, 1.5)

N

Names make it easier
to refer to previously
defined values!

31

Images Allow for different

types of “color”

V

type Image color = Point -> color

sample :: Grid Point -> Image color -> Grid color
sample polints 1mage

= map (map 1mage) points

Functions are just
regular values ...

32

Putting it all together

draw :: [color] ->
Grid Point ->
(Grid color -> pic) -> pic
draw palette grid render

= render (sample grid (fracImage palette))

33

Example 1

charPalette :: [Char]

charPalette =" , o \"~zr0- | 2/<>X+={"0#%&Q@8*3"
charRender :: Grid Char -> IO ()

charRender = putStr . unlines

examplel = draw charPalette mandGrid charRender

34

rrrrrrrrrrrr LTI I LI LI LTI I LI LI I rrrrrg

rrrorrrrrr o rr LTI I LI LI LI I LI LI LI I I rrrrrrrg

rrrrrrrrrrrr L r LI LI LI LI LI LI L L L LI L rrr LI L rrrrrrrg

rrrrrrrrrrrrr L rr L rrrrrrrry st e e rrrrrrrrrrrrrrrry
rrrrrrrrrrrrrrrrrrrrrrrrrrryocsets e e e rrrrrrrrrrrrrir
" ‘Nllll
rrrrrrrrrrrrrrrrrrrrrrrryocss e e | s rrrrrrrrrrir
‘‘‘‘‘ " . _&.on
rrrrrrrrrrrrrrrrrrrrrrrgyocsss s ‘OOO$ """" rrrrrorrir
\\\\\\ wn —P4—An
rrrrrrrrrrrrrrrrrrrrrroscssse s ey 5 r s rrrrrir
““““ won . FUGE LRI T
rrrrrrrrrrrrrrrrrrrgyocssses e ‘?>$$$$&/|- """" rrorir
‘‘‘‘ W e e AN (R EPONE LR IR TR I
[N A A A A A A AR R 270 $$$$$$1- ----- rror
\\\\\\\ wn . 1 | e e e e =M
R R g e e ;$<<00!5$>({S$88S>/X!S0o ;=" ... ,y

PRI e e e M~ 1 {55=5555555555555585158%=0"" " ,
PR e PN~ 0] 4585585 855858555888888850-:"" T L.
R R R R R e et 170/888555588885558888885858888 7~ L
R "M XI--0 1 -007 7 i —XSSSSSSS0888SS8S0S88SSSS8S8SSS e~ L
P e T MMM 0/ SSHSSSSSS 2885598088555 88888558888885888 e~ L
P e T R A LR R R R R e e e e R R R R R Tl
Prrr e A e T84 8885800855588 08855580888558888885888888888 AT T L
rrrre. {SFRBSSSSSSSSSSSS0888SS9508555S50885558888855888885858888888 /0T L
e e R e e e R R R R e R e R R R R e T T e R R e I e R e I R e e e e e e e e e
P e T MM 9S80S 8SSSSSS{ {99088 SSSS008SSSSS088SSSSSSS T L.
P e T MMM~ i0/SSHSSSSSS 12888558555 8555855585955889888882a~" T L
Prr e "X --01 7 -007 7 XS SS 8885555555555 555555888SSSSH~" T T L L
R R R R e ittt 170/88855558588555888888888888 7~ L
PR i e PRI~ 0] 48885858 5558585888888850-:"" T L.
PR i i e e T M~ 1 {S5=55555555555555551588=0"" "L ... ,

\\\\\\\ wn . Y L
T I rrrrr o rr o rrr g s s e e e e e e /$<<OO!$|$>{$$$$>/X!$O---/_ ----- rr
\\\\\ NN e e A I e e tmmmmmms ~
[AANEE NSNS :/0 $$$$$$r- ----- rror
\\\\\\\ won . PR LR IR
A AN AN AL -?>$$$$&/| ------- rroror
‘‘‘‘‘‘ L R L LI
I rrrrrrrr o rrrrrrr e s e e e e e s e ee e eyl 2 rrroror
‘‘‘‘‘ "o . —&gn
rrrrrrr o rrrr o rrrrrrrocs s s s e e e 'OOO$ ------ rrrrrrrr
LRV
A L O R R B rrrrrrrrororo
Fr I rr o r o r o rr o rrrrrrrrrrrrrf] e e e s e s e e s es e ee e e rrrrrrrrrrrrr

draw charPalette mandGrid charRender 35

rrrrrr o rrrr LI LI r LI LI s rrrrrrrg

Example 2

type PPMcolor

ppmPalette
ppmPalette =

ppemMax =

ppmRender
ppmRender g =

= (Int, Int, Int)

[PPMcolor]

[(((2*%1) "mod (ppmMax+1l)), 1, ppmMax-i)
| 1 <—= [0..ppmMax]]

31 :: Int

Grid PPMcolor -> [String]
["P3", show w ++ " " ++ show h, show ppmMax]
++ [show r ++ " " ++ show g ++ " " ++ show Db
| row <- g, (r,g,b) <- row]
where w = length (head g)
h = length g

36

draw ppmPalette mandGridH1 ppmRender

An Imperative Approach

deltax = (xmax-xmin)/cols;
deltay = (ymax-ymin)/rows;
for (x=xmin; x<=xmax,; X+=xdelta) {
for (y=ymin; y<=symax,; y+=ydelta) {
float px = 0, py = 0;

for (i1=1; 1i<colorsMax; 1++) {

(px, py) = (PX*pxX-py*py+x, 2*px*py+ty)
if (px*px + py*py >= 100)
break;

}

putchar (colors[i-1]);

}
putchar (' \n’) ;

38

An Imperative Approach

deltax = (xmax-xmin)/cols;
deltay = (ymax-ymin)/rows;
for (x=xmin; x<=xmax,; X+=xdelta) {
for (y=ymin; y<=ymax; y+=ydelta)
float px = 0, py = 0;
for (1i=1; i<colorsMax; 1i++) {
newpx = pPX*pX-py*py+x;
newpy = 2*px*pytv;

pX = newpx;

Py = newpy;

if (px*px + py*py >= 100)
break;

}

putchar (colors[i-1]);

}
putchar (' \n’) ;

39

Down with Tangling!

N4

N4

Changes to a program may require modifications
of the source code in multiple places

The implementation of a program feature may be
“tangled” through the code

Programs are easier to understand and maintain
when important changes can be isolated to a
single point in the code (and, perhaps, turned
into a parameter)

A simpler example:

= Calculate the sum of the squares of the numbers
from 1 to 10

= sum (map square [1..10]) 40

Summary

€ An appealing, high-level approach to
program construction in which independent
aspects of program behavior are neatly
separated

@ It is possible to program in a similar
compositional / calculational manner in
other languages ...

@ ... but it seems particularly natural in a
functional language like Haskell ...

41

