CS 457/557: Functional
Languages

Lazy Evaluation

Mark P Jones and Andrew Tolmach
Portland State University

What is “Lazy Evaluation™?

With a lazy evaluation strategy:
- Don't evaluate until you have to

- When you do evaluate, save the result so that
you can use it again next time ...

Also called non-strict evaluation, call-by-need
evaluation, or demand-driven evaluation

In some sense, an opposite to eager / strict / call-
by-value evaluation strategies

The Soccer Field in the Park

IS @ game
being
played?

_ _ Field is in use
Field not in use

What is
the score?

One team has more goals

No goals scored
_ (so far)

Who
scored the
goal?

my player somebody else

Evaluation on Demand

You have to ask a series of simple questions to
learn about the result of a computation

Every answer gives us a little more information

#® We only get answers to questions that we ask

4 You don't have to ask the same question twice

@ Initially, we have “no information”,

4 You might not want to know everything about the
result

Lazy Evaluation in Practice

Do not evaluate any part of an
expression until its value is needed

(\x -> 42) (head []) == 42
head [1..] == 1
foldr (&&) True (repeat False) == False

but

foldr (&&) True (repeat True) == L

Lazy Evaluation in Practice

rugs> :set +5 cheap = length expensive
Main> cheap expensive= [fib 23 | i <-[1..5]]
5 midrange = [last expensive | i <-[1..5]]

(156 reductions, 241 cells)

Main> midrange
[28657,28657,28657,28657,28657]
(1655884 reductions, 2638042 cells, 2 garbage collections)

Main> expensive
[28657,28657,28657,28657,28657]

(6622851 reductions, 10551205 cells, 10 garbage collections)

Main>

» a}. You have to ask a series of simple questions to learn about the
result of a computation
° e Every answer gives us a little more information
We only get answers to questions that we ask
You don’t have to ask the same question twice
‘ Initially, we have “no information”, [7

You might not need to know everything about the result

[Int] and want to find

Example: Suppose we have a

list xs ::
the value of xs Il 1

Y
Tl 5
e (| R
S I
: &%@&! |
3 %90

10

Foundational Ideas

#® We're edging towards some very important ideas
in the foundations of programming language
semantics. (Not just functional languages!)

@ Every value, even the “infinite” ones, can be
described by a sequence of approximations,
starting with [J and with each subsequent
element being more well-defined than its
predecessor

® The basic idea is not so unfamiliar:
MT=23.141592652358297293 . ..

11

Why use Lazy Evaluation?

4 To avoid redundant computation

To eliminate special cases (e.g., && and ||) can be
defined as regular functions:

True && X = X
False && x = False

To facilitate reasoning (e.g., we can be sure that
(X ->e)e =[e/x]e)

12

Why use Lazy Evaluation?

Lazy evaluation encourages:
#®Programming in a compositional style
®Working with “infinite data structures”

#®Computing with “circular programs”

13

Compositional Style

Separate aspects of program behavior
separated into independent components

fact n = product [1..n]

sumSgrs n = sum (map (\x -> x*x) [1..n])

minimum = head . sort

“Infinite” Data Structures

Data structures are evaluated lazily, so we can
specify “infinite” data structures in which only the
parts that are actually needed are evaluated:

powersOfTwo = jterate (2*) 1
twoPow n = powersOfTwo !l n
fibs = 0:1: zipWith (+) fibs (tail fibs)

fib n = fibs ! n

Memoization

A more general facility that takes advantage of
laziness is memoization

import Data.Vector((!),generate)

fib n = fibs ! n
where fibs = generate (n+1) f
fO=0
fi1=1

fn = (fibs | (n-1)) + (fibs ! (n-2))

Circular Programs

An example due to Richard Bird (“Using circular
programs to eliminate multiple traversals of data”):

Consider a tree datatype:
data Tree = Leaf | Fork Int Tree Tree

Define a function
repMin :: Tree -> Tree

that will produce an output tree with the same shape as
the input but replacing each integer with the minimum
value in the original tree.

Example

Same shape, values replaced with minimum

Example

Obvious implementation:
repMin t = mapTree (\n-> m) t
where m = minTree t

Example

Can we do this with only one traversal?

A Slightly Easier Problem

In a single traversal:
e (Calculate the minimum value in the tree
e Replace each entry with some given n

A Single Traversal

We can code this algorithm fairly easily:

repMin’ . Int -> Tree -> (Int, Tree)
repMin’ n Leaf = (maxInt, Leaf)
repMin” n (Fork m | r)

= (min m (min nl nr), Fork nI’ r’)
where

(nl, ") =repMin’ nl
(nr, r’') =repMin’ nr

“Tying the knot”

* Now a call repMin® m t will produce a pair (n, t')
where

- n is the minimum value of all the integers in t

- t’ is a tree with the same shape as t but with each
integer replaced by m.

e We can implement repMin by creating a cyclic
structure that passes the minimum value that is
returned by repMin’ as its first argument:

repMint =t where (n, t') = repMin’T nt
|

Building Cyclic Data
Structures

Cyclic Structures

Haskell makes it easy to define linked structures:

1 —P> 2 —> 3 —P> 4 —> 5

nums = 1 : 2 : 3 + 4 + 5 ¢+ []

#® We can even define structures with loops:

4
/' \
1 —p> 2 —> 3 <— 5

loopy =1 : 2 : loop
where loop = 3 : 4 : 5 : loop

4 How far can we go?
35

Doubly Linked Structures

4 Can we build a doubly linked structure?

4 ring = rl
3 :::: where
\Ei\ rl = Node r5 1 r2
5 r2 = Node rl 2 r3
Il r3 = Node r2 3 r4
) /?;/ r4 = Node r3 4 rb
T r5 = Node r4 5 rl

data Ring a = Node (Ring a) a (Ring a)

4 Can we build a ring from an arbitrary list?

makeRing :: [a] —-> Ring a
36

Making Rings, First Attempt

makeRing :: [a] -> Ring a ; —
makeRing xs = loop Xs
7 P loop back
where to the
loop [] = 2727 start...
loop (xX:xs) = this 2
' _ \
where this = Node ??77? X next

next = 1loop XS

Making Rings, Attempt II

makeRing :: [a] -> Ring a ; —
makeRing xs = start \\\
where I
start = loop xs
1./
loop [] = start T~
loop (x:xs) = this
where this = Node 7?7?77 x next
next = 1loop xS

We don’t know what the
predecessor should be; so
ask for it to be supplied
as a parameter ...

Making Rings, Attempt III

3

—

H

2

makeR1ing :: [a] -> Ring a
makeRing xs = start need last
where node ...
start = loop ?77 Xs
loop prev |[] = start
loop prev (x:xs) = this
where this = Node prev x next

next = loop this xs

N\

Q

Making Rings, at last!

4

makeRing :: [a] -> Ring a ; ;j:: \ss\
makeRing xs = start
where 5
(start, last) = loop last xs /é;/
2
loop prev [] = (start, prevT_;:::]
loop prev (x:xs) = (this, last)
where this = Node prev x next

(next, last) = loop this xs

Making Rings, at last!

4

makeRing :: [a] -> Ring a ; ;j:: \ss\
makeRing xs = start
where Il 5
(start, la?t) = loop 1?5t XS /é;/
2
loop prev [] = (start, prev) :::: .
loop prev (x:xs) = (this, last)
where this = Node prev x next

(next, last) = loop this xs

Making Rings, at last!

9
pa—

]
i

i

[1..12] 1

|/

\

Operations on Rings

next, prev :: Ring a -> Ring a

next (Node p v n) = n

prev (Node p v n) = p

curr :: Ring a > a

curr (Node p v n) = v

forward :: Ring a > [a]

forward = map curr . 1lterate next
backward :: Ring a > [a]

backward = map curr . l1lterate prev

In practice ...

Main> take 10 (forward (makeRing [1..7]))
(1,2,3,4,5,6,7,1,2,3]

Main> take 10 (backward (makeRing [1..7]))
(1,7,6,5,4,3,2,1,7,6]

Main>

For these examples, we could
have used modulo arithmetic ...

But Rings are more general ...

and more mindbending too! ©

Pragmatic Aspects of
Lazy Evaluation

| aziness and Performance

Laziness delays the evaluation of expressions until
their values are needed

= In theory, this should mean that computations
only do the minimum amount of work that is
necessary

= But delaying work has costs too ..
Performance can be impacted by laziness

€ ... but there are tools we can use to deal with that!

46

Summing a list of numbers

Simple recursive

mySum [] = 0 definition

mySum (x:xs) = X + mySum XS

mySum [1..4] Computation grows (“on the
= 1 + mySum [2..4] stack”) until we can begin
~ 1 ¢ (2 + mySum [3..4) reducing the expression
= 1 + (2 + (3 + mySum [4..4]))
= 1 + (2 + (3 + (4 + mySum [])))
= 1 + (2 + (3 + (4 + 0)))
=1 + (2 + (3 + 4))
= 1 + (2 + 7)
=1+ 9 How can we make
- 10 this run in

constant space?

In practice ...

Main> mySum [1..]

ERROR - Control stack overflow
Main> :set +
| J Displays memory recovered
Main> mySum [1..] after each garbage
collection

{{Gc:921075} }ERROR - Control stack overflow

Main>

USlng Ta|| RGCUFSlOn An accumulating

mySuml XS

sumLoopl n []

sumLoopl n (x:xS)

mySuml [1..4]
= sumLoopl
= sumLoopl
= sumLoopl
= sumLoopl

= sumLoopl
= 10

R o0 W P O

parameter
sumLoopl 0 xs Tail recursive
n definition

sumLoopl (n+x) Xxs

Partial sums are collected in

4]

- 4] the accumulating parameter!
4]
4]

Too good to be true?

In practice ...

Main> :set +g
Main> mySum [1..]

{{Gc:921075} }ERROR - Control stack overflow
Main> mySuml [1..]
{ {GcSegmentation fault

ada:~/fun%

Laziness kicks in ®

Laziness tells us:
Here’s what really happens ... don't evaluate
the argument

mySuml [1..4] until it is needed

= sumLoopl 0 [1..4]

= sumLoopl (0 + 1) [2..4]

= sumLoopl ((O0 + 1) + 2) [3..4]

= sumLoopl (((0O + 1) + 2) + 3) [4..4]

= sumLoopl ((((0O + 1) + 2) + 3) + 4) []

= ((((0 + 1) + 2) + 3) + 4) Still builds a large

= (((L + 2) + 3) + 4) expression before
— ((3 + 3) + 4) summing starts ...
= (6 + 4)

- 10 The expression for mySuml [1..] iS SO

large, it crashes the hugs garbage collector!

Strictness Analysis

This example runs fine in GHC; how is that
possible?

® GHC includes:

= An advanced program analysis called “strictness analysis”
that is able to determine that sumLoop1 is strict in both

arguments.

= An advanced optimizer that is able to use this information
to generate equivalent code for sumLoop1l that evaluates

the accumulating parameter as computation proceeds.

4 Can we get this behavior without relying on a
“sufficiently smart” compiler?

52

The seq operator

Haskell includes a special primitive:
seq :: a —-> b —-> D

@ Intuitively, x “seqg” vy evaluates x and then
returns the value of vy

] "seqg vy =[]
X seq Yy =Yy, if x#[

Technically, we cannot actually match against

(that amounts to solving the halting problem), but
we can still implement seqg as a primitive ...

53

Using seqg to sum a list

mySumz2 XS = sumLoop?2 0 xs
sumLoopZ n [] = n
sumLoopZ2 n (Xx:xs) = n seqg sumLoop?Z2 (n+x) Xs

Force evaluation of n

mySum2 [1..4] before recursive call

= sumLoop2 0 [1..4]

= sumLoopZ2 (0+1) [2..4]
= sumLoop2 (1+2) [3..4]
= sumLoop?2 (3+3) [4..4]
= sumLoop2 (6+4) []

= 6+4

Runs in constant space,
= 10 even without strictness
analysis!

In practice ...

Main> :set +g
Main> mySum [1..]

{{Gc:921075} }ERROR - Control stack overflow
Main> mySum2 [1..]

{{Gc:986501}}{{Gc:986553}}{{Gc:986552}}{{Gc:9

86552} }{{Gc:986555}}{{Gc:986549}}{{Gc:986554}
}{{Gc:986558}}{{Gc:986555}}{{Gc:986558}}{{Gc:

986549} 1} {{Gc:986555}}{{Gc:986558}}{{Gc:986553
}1{{Gc:986556}}{{Gc:986551}}

{{Gc:986553}}{{Gc"C:986550}}{Interrupted!}

Confirms that we are

{{Gc:986556} }Main> running in “constant space”

Laziness and IO Action Quiz

progl :: IO ()
progl = do putStr "Type quit to stop: "
1 <- getlLine
1f 1=="quit"
then putStrLn "We are donel!"
else do putStrLn 1
progl
Will this program
run in constant
Space?

Tail recursion

Yes, assuming bounded
input on each line ...

Laziness and IO Action Quiz

prog2 :: IO Int Returns number of lines read
prog2 = do putStr "Type quit to stop: "
1 <- getlLine
1f 1=="quit"
then do putStrLn "We are done!"
return O
else do putStrLn 1
n <- prog?2
What about this return (n+1)
version?

No tail recursion: each call to
prog2 will create deeper nesting

Laziness and IO Action Quiz

prog3 :: Int -> IO Int

prog3 n = do putStr "Type quit to stop: "
1 <- getline
1f 1=="quit"

Accunuﬂahng then do putStrLn "We are done!™

parameter ceturn n
else do putStrLn 1
prog3 (n+1)
Will this program
run in constant Tail recursion

Space?
Depends on the
compiler ...

Laziness and IO Action Quiz

prog4 -: Int -> IO Int
prog4 n = do putStr "Type quit to stop: "
1 <- getline
if l=="quit"
then do putStrLn "We are done!"
return n
else do putStrLn 1

n seqg prog4 (n+l)
Will this program

run in constant |
space? Forces evaluation

of accumulating
Yes! parameter

Summary

@ Laziness provides new ways (with respect to other
paradigms) for us to think about and express algorithms

4% Enhanced modularity from compositional style, infinite data
structures, etc...

4 Novel programming techniques like knot tying/circular
programs ...

Subtle interactions with performance ...

@ Further Reading:
= Programming in Haskell, Graham Hutton, Chapter 15
= Why Functional Programming Matters, John Hughes
= The Semantic Elegance of Applicative Languages, D. A. Turner

= Using Circular Programs to Eliminate Multiple Traversals of Data0
Structures, Richard Bird

