CS 457/557: Functional Languages

Lazy Evaluation

Mark P Jones and Andrew Tolmach
Portland State University

What is "Lazy Evaluation"?

With a **lazy** evaluation strategy:

- Don't evaluate until you have to
- When you do evaluate, save the result so that you can use it again next time ...

Also called **non-strict** evaluation, **call-by-need** evaluation, or **demand-driven** evaluation

In some sense, an opposite to **eager** / **strict** / **call-by-value** evaluation strategies

The Soccer Field in the Park

- You have to ask a series of simple questions to learn about the result of a computation
- Every answer gives us a little more information
- We only get answers to questions that we ask
- You don't have to ask the same question twice
- ◆ Initially, we have "no information", □
- You might not want to know everything about the result

Lazy Evaluation in Practice

Do not evaluate any part of an expression until its value is needed

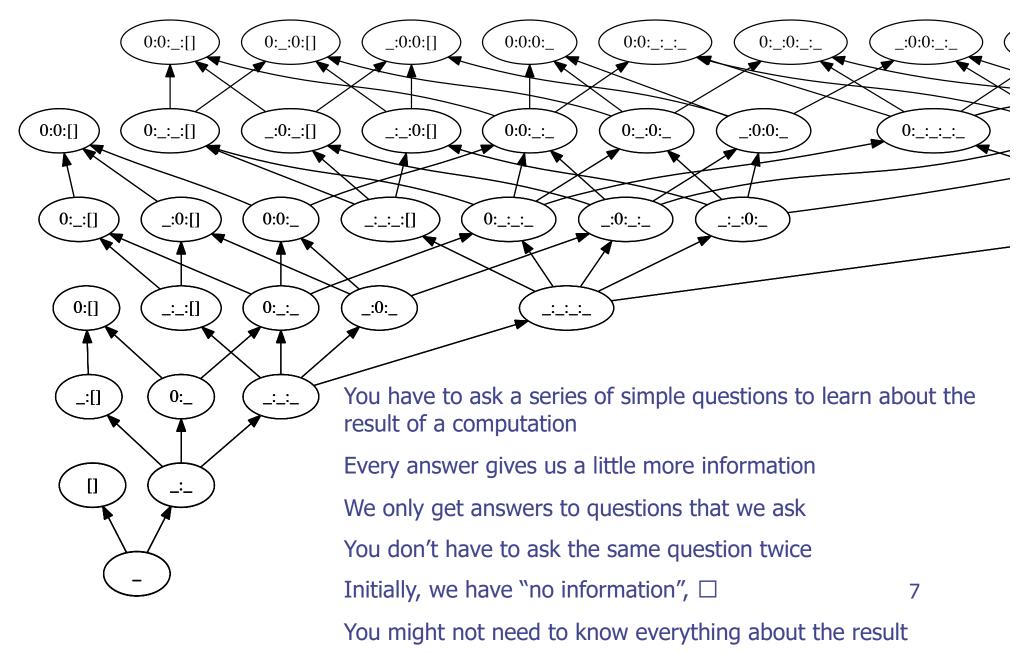
```
(\x -> 42) (head []) == 42
head [1..] == 1
foldr (&&) True (repeat False) == False
```

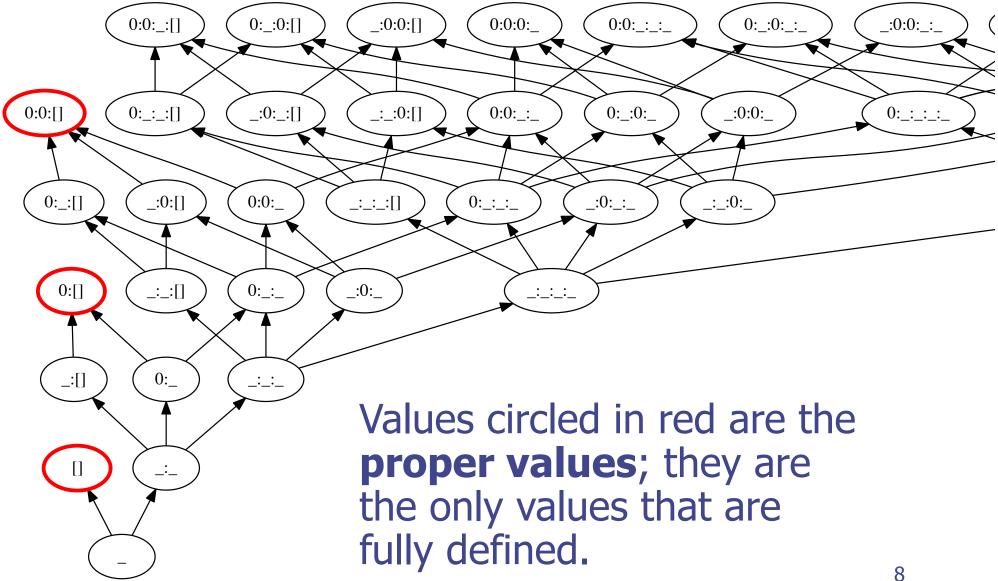
but

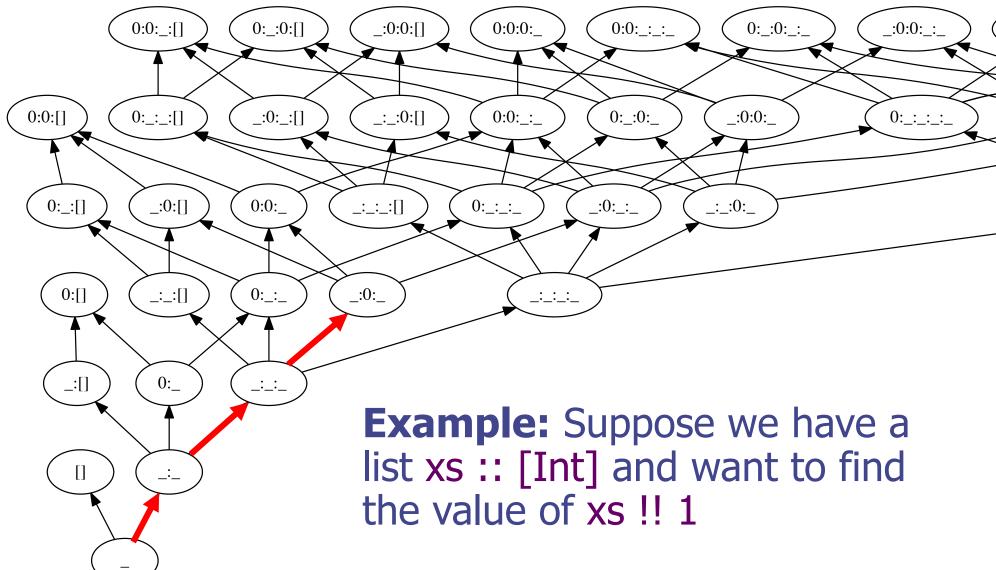
```
foldr (&&) True (repeat True) == \bot
```

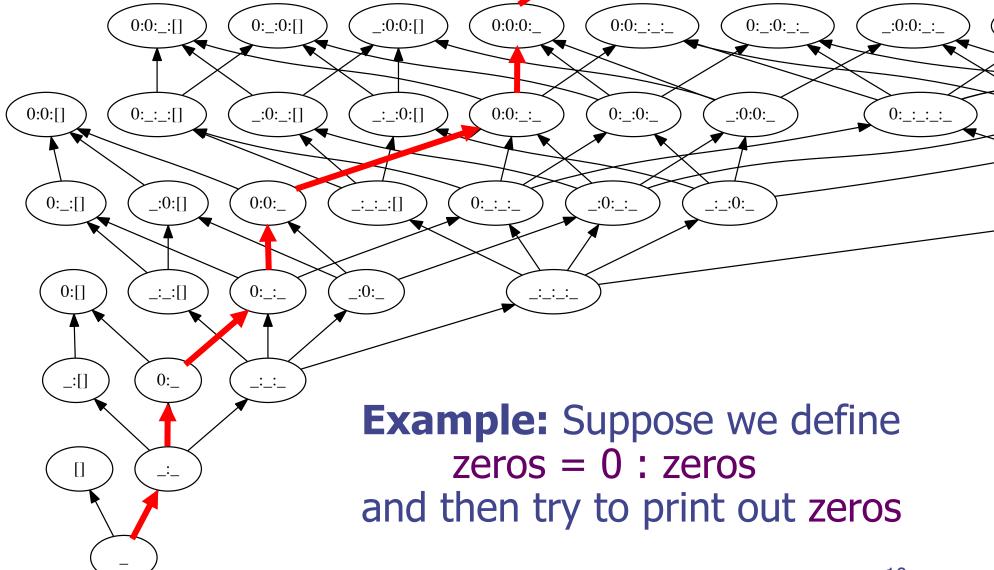
Lazy Evaluation in Practice

```
cheap = length expensive
Hugs> :set +s
                 expensive= [ fib 23 | i <- [1..5] ]
Main> cheap
                 midrange = [last expensive | i <- [1..5]]
5
(156 reductions, 241 cells)
Main> midrange
[28657, 28657, 28657, 28657, 28657]
(1655884 reductions, 2638042 cells, 2 garbage collections)
Main> expensive
[28657, 28657, 28657, 28657, 28657]
(6622851 reductions, 10551205 cells, 10 garbage collections)
Main>
```









Foundational Ideas

- We're edging towards some very important ideas in the foundations of programming language semantics. (Not just functional languages!)
- ◆ Every value, even the "infinite" ones, can be described by a sequence of approximations, starting with □ and with each subsequent element being more well-defined than its predecessor
- The basic idea is not so unfamiliar:

```
\pi = 3.141592653589793...
```

Why use Lazy Evaluation?

- To avoid redundant computation
- To eliminate special cases (e.g., && and ||) can be defined as regular functions:

```
True && x = x
False && x = False
```

To facilitate reasoning (e.g., we can be sure that (x -> e) e' = [e'/x] e)

Why use Lazy Evaluation?

Lazy evaluation encourages:

- Programming in a compositional style
- Working with "infinite data structures"
- Computing with "circular programs"

Compositional Style

Separate aspects of program behavior separated into independent components

```
fact n = product [1..n]

sumSqrs n = sum (map (x -> x*x) [1..n])

minimum = head . sort
```

"Infinite" Data Structures

Data structures are evaluated lazily, so we can specify "infinite" data structures in which only the parts that are actually needed are evaluated:

```
powersOfTwo = iterate (2*) 1
twoPow n = powersOfTwo !! n
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
fib n = fibs !! n
```

Memoization

A more general facility that takes advantage of laziness is **memoization**

```
import Data.Vector((!),generate)

fib n = fibs ! n

where fibs = generate (n+1) f

f 0 = 0

f 1 = 1

f n = (fibs ! (n-1)) + (fibs ! (n-2))
```

Circular Programs

An example due to Richard Bird ("Using circular programs to eliminate multiple traversals of data"):

Consider a tree datatype:

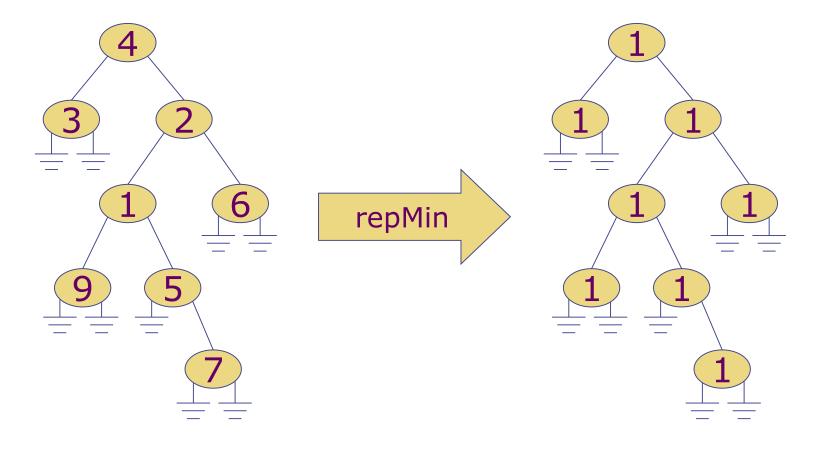
data Tree = Leaf | Fork Int Tree Tree

Define a function

repMin :: Tree -> Tree

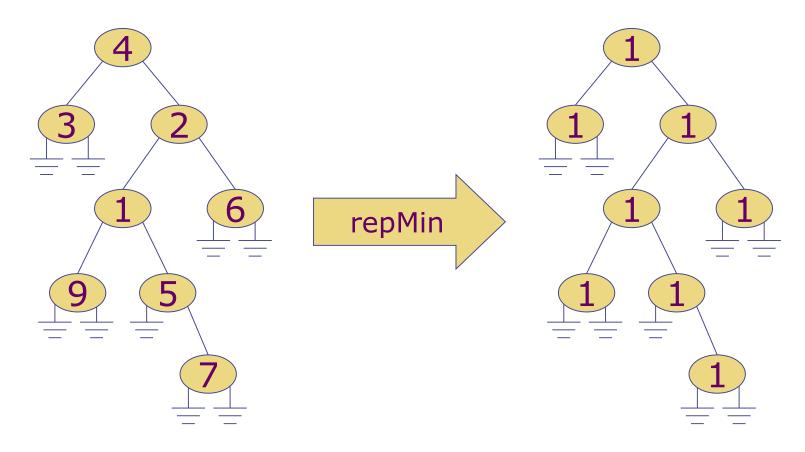
that will produce an output tree with the same shape as the input but replacing each integer with the minimum value in the original tree.

Example



Same shape, values replaced with minimum

Example

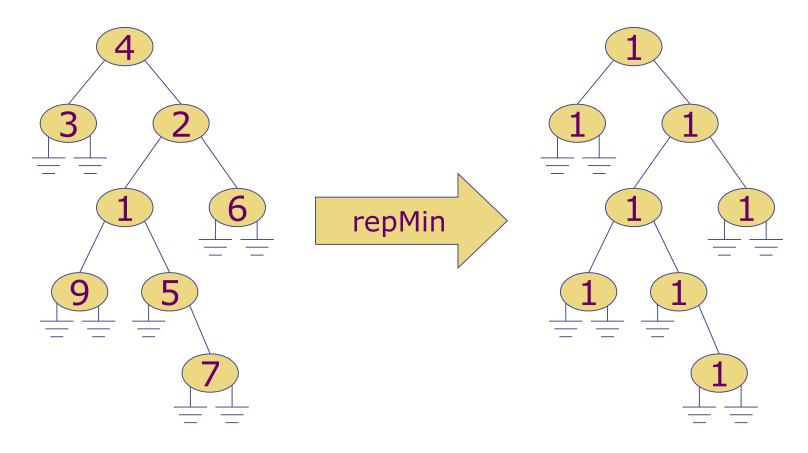


Obvious implementation:

repMin t = mapTree (\n -> m) t

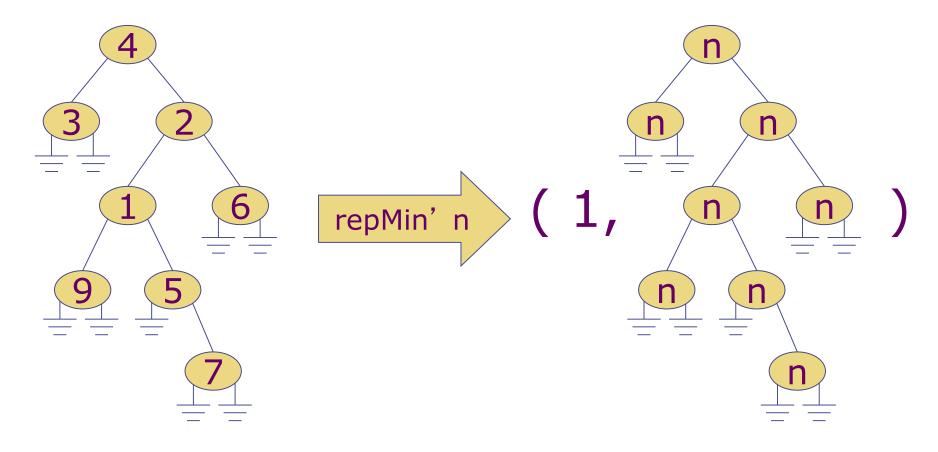
where m = minTree t

Example



Can we do this with only one traversal?

A Slightly Easier Problem



In a single traversal:

- Calculate the minimum value in the tree
- Replace each entry with some given n

A Single Traversal

We can code this algorithm fairly easily:

"Tying the knot"

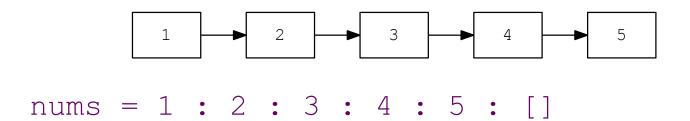
- Now a call repMin' m t will produce a pair (n, t') where
 - n is the minimum value of all the integers in t
 - t' is a tree with the same shape as t but with each integer replaced by m.
- We can implement repMin by creating a cyclic structure that passes the minimum value that is returned by repMin' as its first argument:

```
repMin t = t' where (n, t') = repMin' n t
```

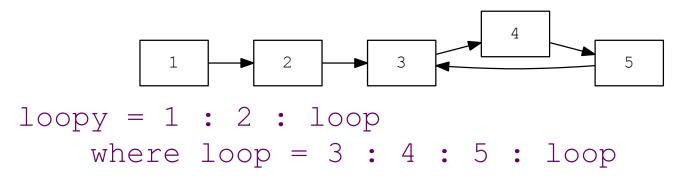
Building Cyclic Data Structures

Cyclic Structures

Haskell makes it easy to define linked structures:



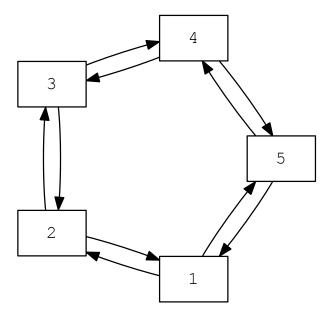
• We can even define structures with loops:



How far can we go?

Doubly Linked Structures

Can we build a doubly linked structure?



```
ring = r1
where
  r1 = Node r5 1 r2
  r2 = Node r1 2 r3
  r3 = Node r2 3 r4
  r4 = Node r3 4 r5
  r5 = Node r4 5 r1
```

data Ring a = Node (Ring a) a (Ring a)

Can we build a ring from an arbitrary list?

```
makeRing :: [a] -> Ring a
```

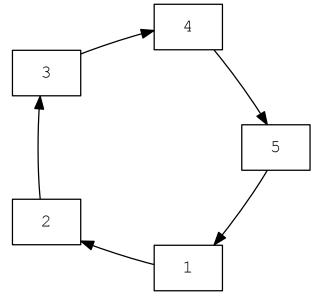
Making Rings, First Attempt

```
makeRing :: [a] -> Ring a
makeRing xs = loop xs
where
loop [] = ??? start...
loop (x:xs) = this
where this = Node ??? x next
next = loop xs
```

Making Rings, Attempt II

```
makeRing :: [a] -> Ring a
makeRing xs = start
where
start = loop xs

loop [] = start
loop (x:xs) = this
where this = Node ??? x next
next = loop xs
```



We don't know what the predecessor should be; so ask for it to be supplied as a parameter ...

Making Rings, Attempt III

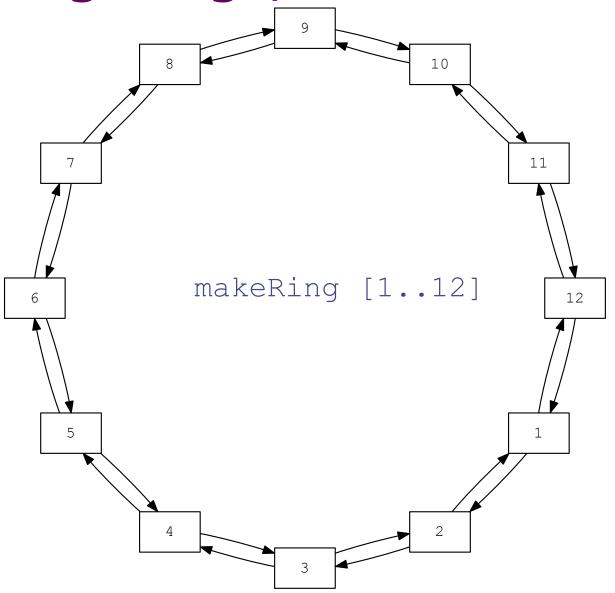
```
makeRing :: [a] -> Ring a
makeRing xs = start
    need last
where
    start = loop ??? xs

loop prev [] = start
loop prev (x:xs) = this
    where this = Node prev x next
    next = loop this xs
```

Making Rings, at last!

Making Rings, at last!

Making Rings, at last!



Operations on Rings

```
next, prev :: Ring a -> Ring a
next (Node p v n) = n
prev (Node p v n) = p
              :: Ring a -> a
Curr
curr (Node p v n) = v
        :: Ring a -> [a]
forward
forward
                 = map curr . iterate next
backward
               :: Ring a -> [a]
backward
                  = map curr . iterate prev
```

In practice ...

```
Main> take 10 (forward (makeRing [1..7]))
[1,2,3,4,5,6,7,1,2,3]
Main> take 10 (backward (makeRing [1..7]))
[1,7,6,5,4,3,2,1,7,6]
Main>
```

For these examples, we could have used modulo arithmetic ...

But Rings are more general ...

and more mindbending too! ©

Pragmatic Aspects of Lazy Evaluation

Laziness and Performance

- Laziness delays the evaluation of expressions until their values are needed
 - In theory, this should mean that computations only do the minimum amount of work that is necessary
 - But delaying work has costs too ...
- Performance can be impacted by laziness
- ... but there are tools we can use to deal with that!

Summing a list of numbers

```
Simple recursive
mySum [] = 0
                                    definition
mySum (x:xs) = x + mySum xs
mySum [1..4]
                                    Computation grows ("on the
                                     stack") until we can begin
  = 1 + mySum [2...4]
                                      reducing the expression
  = 1 + (2 + mySum [3..4)
  = 1 + (2 + (3 + mySum [4..4]))
  = 1 + (2 + (3 + (4 + mySum [])))
  = 1 + (2 + (3 + (4 + 0)))
  = 1 + (2 + (3 + 4))
  = 1 + (2 + 7)
  = 1 + 9
              How can we make
                 this run in
  = 10 ____
               constant space?
```

In practice ...

Using Tail Recursion

An accumulating parameter

```
mySum1 xs = sumLoop1 0 xs
                                          Tail recursive
                                           definition
sumLoop1 n [] = n
sumLoop1 n (x:xs) = sumLoop1 (n+x) xs
mySum1 [1..4]
  = sumLoop1 0 [1..4]
                           Partial sums are collected in
  = sumLoop1 1 [2..4]
                          the accumulating parameter!
  = sumLoop1 3 [3..4]
  = sumLoop1 6 [4..4]
  = sumLoop1 10 []
  = 10
```

Too good to be true?

In practice ...

```
Main> :set +g
Main> mySum [1..]

{{Gc:921075}}ERROR - Control stack overflow
Main> mySum1 [1..]

{{GcSegmentation fault
ada:~/fun%
```

Laziness kicks in

Here's what really happens ...

= 10

Laziness tells us: don't evaluate the argument until it is needed

```
mySum1 [1..4]
  = sumLoop1 0 [1..4]
  = sumLoop1 (0 + 1) [2..4]
  = sumLoop1 ((0 + 1) + 2) [3..4]
  = sumLoop1 (((0 + 1) + 2) + 3) [4..4]
  = sumLoop1 ((((0 + 1) + 2) + 3) + 4) []
  = ((((0 + 1) + 2) + 3) + 4)
  = (((1 + 2) + 3) + 4)
  = ((3 + 3) + 4)
  = (6 + 4)
```

Still builds a large expression before summing starts ...

The expression for mySum1 [1..] is so large, it crashes the hugs garbage collector!

Strictness Analysis

- This example runs fine in GHC; how is that possible?
- GHC includes:
 - An advanced program analysis called "strictness analysis" that is able to determine that sumLoop1 is strict in both arguments.
 - An advanced optimizer that is able to use this information to generate equivalent code for sumLoop1 that evaluates the accumulating parameter as computation proceeds.
- Can we get this behavior without relying on a "sufficiently smart" compiler?

The seq operator

Haskell includes a special primitive:

Intuitively, x `seq` y evaluates x and then returns the value of y

$$\square$$
 `seq` y = \square
x `seq` y = y, if $x \neq \square$

◆ Technically, we cannot actually match against ☐ (that amounts to solving the halting problem), but we can still implement seq as a primitive ...

Using seq to sum a list

```
mySum2 xs = sumLoop2 0 xs
sumLoop2 n [] = n
sumLoop2 n (x:xs) = n seq sumLoop2 (n+x) xs
                               Force evaluation of n
mySum2 [1..4]
                               before recursive call
  = sumLoop2 0 [1..4]
  = sumLoop2 (0+1) [2..4]
  = sumLoop2 (1+2) [3..4]
  = sumLoop2 (3+3) [4..4]
  = sumLoop2 (6+4) []
  = 6+4
                Runs in constant space,
  = 10 ____
                 even without strictness
                      analysis!
```

In practice ...

```
Main> :set +q
Main> mySum [1..]
{{Gc:921075}}ERROR - Control stack overflow
Main> mySum2 [1..]
{ Gc: 986551} } { Gc: 986553} } { Gc: 986552} } { Gc: 9
86552}}{{Gc:986555}}{{Gc:986549}}{{Gc:986554}}
} { {Gc: 986558} } { {Gc: 986555} } { {Gc: 986558} } { {Gc:
986549}}{{Gc:986555}}{{Gc:986558}}{{Gc:986553}
} { {Gc: 986556} } { {Gc: 986551} }
{ {Gc:986553} } { {Gc^C:986556} } { Interrupted! }
                                 Confirms that we are
{ {Gc: 986556} } Main>
```

running in "constant space"

Will this program run in constant space?

Tail recursion

Yes, assuming bounded input on each line ...

```
Returns number of lines read
prog2 :: IO Int
prog2 = do putStr "Type quit to stop: "
             l <- getLine</pre>
             if l=="quit"
               then do putStrLn "We are done!"
                        return 0
               else do putStrLn l
                        n <- prog2
What about this
                        return (n+1)
```

version?

No tail recursion: each call to prog2 will create deeper nesting

Will this program run in constant space?

Tail recursion

Depends on the compiler ...

```
prog4 :: Int -> IO Int
prog4 n = do putStr "Type quit to stop: "
              l <- getLine</pre>
              if l=="quit"
                then do putStrLn "We are done!"
                        return n
                else do putStrLn l
```

Will this program run in constant space?

 $n \ge eq \ge prog4 (n+1)$

Yes!

Forces evaluation of accumulating parameter

Summary

- Laziness provides new ways (with respect to other paradigms) for us to think about and express algorithms
- Enhanced modularity from compositional style, infinite data structures, etc...
- Novel programming techniques like knot tying/circular programs ...
- Subtle interactions with performance ...
- Further Reading:
 - Programming in Haskell, Graham Hutton, Chapter 15
 - Why Functional Programming Matters, John Hughes
 - The Semantic Elegance of Applicative Languages, D. A. Turner
 - Using Circular Programs to Eliminate Multiple Traversals of Data Structures, Richard Bird