CS 45°7/55°7 Functional Programming

Lecture 5
Polymorphism; Higher-order functions

10/06/05 PSU CS457/557 Spr'05 Tolmach

Polymorphic Length

“a” is a type variable. It is
lowercase to distinguish it
from types, which are

Vuppercase.

len :: [a] -> Int
len [] =0
len (x:xs) l + len xs

* Polymorphic functions don’t “look at” their
polymorphic arguments.

* They use the same code now matter what the
type of their polymorphic arguments.

10/06/05 PSU CS457/557 Spr'05 Tolmach

Polymorphism

 Consider: tagl x = (1,x)
> :type tagl
tagl :: a -> (Int,a)

* Other functions have types like this; consider (++)
? :type (++)
(++) :: [a] -> [a] -> [a]

 What are some other polymorphic functions and their
types?
_id
— reverse
— head
— tail
- ()

10/06/05 PSU CS457/557 Spr'05 Tolmach

Polymorphic data structures

* Polymorphism originates from data structures that
don’t care what kind of data they store.

id :: a -> a —-— The ultimate
-—- polymorphic function

reverse :: [a] -> [a] -— lists
tail :: [a] -> [a]

head :: [a] -> a

(:) :: a -> [a] -> [a]

fst :: (a,b) -> a -- tuples
swap :: (a,b) -> (b,a)

« How do we define new data structures with “holes”
that can be polymorphic?

10/06/05 PSU CS457/557 Spr'05 Tolmach

Maybe is polymorphic

data Maybe a = Just a | Nothing

Note the types of the constructors:
Nothing :: Maybe a

Just :: a -> Maybe a

Thus:
Just 3 :: Maybe Int
Just “x“ :: Maybe String
Just (3,True) :: Maybe (Int,Bool)
Just (Just 1) :: Maybe (Maybe Int)

Example of its use:
| ookup :: a ->[(a,b)] -> Maybe b

| ookup k [] = Not hi ng
| ookup k ((k',v):rest) | k == k' = Just v
| otherw se = | ookup k rest

10/06/05 PSU CS457/557 Spr'05 Tolmach

Polymorphism from functions as arguments

* Another source of polymorphism comes from functions
which take functions as arguments.

applyTwice £ x = f£(f x)

Main> :t applyTwice
applyTwice :: (a -> a) -> a -> a

 What's the type of the following useful function?
flip £f xy=f y x

10/06/05 PSU CS457/557 Spr'05 Tolmach

Polymorphism: Functions returned as values

» Consider:

const x f
where f y = x

Main> (const 3) 5

3
— What’s the type of const?

* Another Example:

compose £ g x = £ (g x)
— What'’s the type of compose ?
— Note: Prelude defines compose as an infix operator
(f . g x=1 (g9 X)

10/06/05 PSU CS457/557 Spr'05 Tolmach

Abstraction Over Recursive
Definitions

Recall some definitions from previous chapters.
Section 4.1:

translist [] []
translList (p:ps) trans p : translist ps

Section 3.1;

putCharList [] []
putCharList (c:cs) putChar ¢ : putCharList cs

There is something strongly similar about these definitions.
Indeed, the only thing different about them (besides the variable
names) is the function trans vs. the function putChar.

 We can use the abstraction principle to take advantage of this.

10/06/05 PSU CS457/557 Spr'05 Tolmach 8

Abstraction Yields map

trans and putChar are what’s different; so they should be
arguments to the abstracted function.

In other words, we would like to define a function called
map (say) such that map trans behaves like transList, and
map putChar behaves like putCharList.

No problem:

map £ [] []
map f (x:xs) f x : map £ xs

Given this, it is not hard to see that we can redefine
transList and putCharList as:

translist XS map trans XS
putCharList cs map putChar cs

10/06/05 PSU CS457/557 Spr'05 Tolmach

map is Polymorphic

« The key thing about map is that it is polymorphic. Its most
general (“principal”) type is:

map :: (a->b) -> [a] -> [Db]

Every use of map has a type that is an instance of the
principal type (obtained by substituting for a and b).

For example, since trans :: Vertex -> Point, then
map trans :: [Vertex] -> [Point]

and this use of map has type
map :: (Vertex -> Point) -> [Vertex] -> [Point]

10/06/05 PSU CS457/557 Spr'05 Tolmach

Another Pattern: Filtering

* Consider extracting the even numbers from a list:

evens :: [Int] -> [Int]
evens [] =[]
evens (x:xs) | even X = X:(evens Xxs)

| otherw se = evens Xxs

* Or removing the whitespace from a string:
nowhite :: String -> String

nowhite “” = “”
nowhite (c:cs) | not (whitesp c) = x : (nowhite cs)
| otherw se = nowhite cs
where whitesp ' ' = True
whitesp '"\t' = True
whitesp _ = Fal se

10/06/05 PSU CS457/557 Spr'05 Tolmach 11

Abstractingtofil ter

e Can define a common function

filter :: (a ->Bool) ->[a] ->[4q]
filter p [] =[]
filter p (x:xs) | p x = x:(filter

P XS)

| otherwmse = filter p xs

e Now can rewrite
evens xs = filter even Xxs

— or just:
evens = filter even

« And
nowhite = filter (not . whitesp)

— Recall that (.) represents function composition.

10/06/05 PSU CS457/557 Spr'05 Tolmach

12

List comprehensions revisited

Recall some uses of the list comprehension notation
put CharList cs = [putChar ¢ | ¢ <- cs]
evens Xxs = [y | y <- Xxs, even Y]

Observe that this notation incorporates both nap and
filter, e.g.
put NonWhi teChars cs =
[putChar ¢ | ¢ <- cs, not (whitesp c)]

Can easily define map and fi | t er in terms of list
comprehenion (try it!)

Actually, list comprension is defined in terms of nap and
filter (and a few other things...)

10/06/05 PSU CS457/557 Spr'05 Tolmach 13

When to Define
Higher-Order Functions

« Recognizing repeating patterns is the key, as we did for map.
As another example, consider:
sum :: [Int] -> Int

sum [] —@

sum (x:xs) x\+ 'sum XS
e

and :: [Bool] -> Bool

and [] =

and (x:xs) = x(&&)and XS

myminimum :: [Int] -> Int

myminimum [] -

myminimum (x:xs) = x(m:|.n, myminimum Xxs

 Note the similarities. Also note the differences (circled), which
need to become parameters to the abstracted function.

10/06/05 PSU CS457/557 Spr'05 Tolmach

When to Define
Higher-Order Functions

« Recognizing repeating patterns is the key, as we did for map.
As another example, consider:
sum :: [Int] -> Int
sum [] =@ Initial

sum (x:xs) = X+ sum xs values

| Combining ops

and :: [Bool] -> Bo
and []

— &
and (x:xs) = x(&&

>éhd Xs
myminimum :: [Int] -> Int
myminimum [] =
myminimum (x:xs) = x(min’ myminimum xs
 Note the similarities. Also note the differences (circled), which
need to become parameters to the abstracted function.

10/06/05 PSU CS457/557 Spr'05 Tolmach

Abstracting to f ol dr

« This leads to:
foldr op init [] init
foldr op init (x:xs) x op (foldr op init xs)
« Note that foldr is also polymorphic:

foldr :: (a -=> b -> b) -=>b -> [a] -> b

— We'll see the full power of this polymorphism shortly.

 Previous functions can now be redefined:
sum xs = foldr (+) O xs
and xs = foldr (&&) True xs

myminimum xs = foldr min maxBound xs

10/06/05 PSU CS457/557 Spr'05 Tolmach

Visualizing the effect of f ol dr

* One useful way to think about what f ol dr does is to
observe what it does on an arbitrary list written using
explicit constructors:

foldr op init [x1,x2,..., XN]
= foldr opinit (x1 : (x2: (... (xn : []) ...)))
=x1 op (x2 op (... (xn op init) ...))

* So we can think of f ol dr as taking a list and replacing
each (:) byop and thefinal[] byinit.

foldr (+) O‘}(ZQW)

=1+ (204 (3(+0))
« The r in fol dr is because it “folds from the right”.

10/06/05 PSU CS457/557 Spr'05 Tolmach 17

Mystery folds

 Consider these functions:

nysteryl xs =

nystery2 xs =
where k a

nystery3 g Xs
where Kk X

foldr (*) 1 xs

foldr k O xs

b

b

=b + 1

foldr k Fal se xs
=qgx || b

nysteryd = foldr (:) []

 What are their types?
 What do they do?

10/06/05

PSU CS457/557 Spr'05 Tolmach

18

Two Folds are Better than One

In addition to f ol dr, the Haskell Prelude defines another function
foldl which “folds from the left”:

foldl op init (x1 : x2 : ... : xn : [])
= (...((init "op x1) op x2)...) op xn

Exercise: define f ol dl using recursion.

Why two folds? Often they are equivalent, but sometimes using one
can be more efficient than the other. For example:

foldr (++) [] [x,vy,z]
foldl (++) [] [x,vy,z]

The former is more efficient than the latter (see textbook).

x ++ (y ++ z2)
(x ++ y) ++ =z

In general, one or the other of foldl and foldr may be more
efficient and/or lazier in any given circumstance.

Choosing between them is non-trivial!

10/06/05 PSU CS457/557 Spr'05 Tolmach

Reversing a List

Obvious but inefficient (why?):

reverse [] []
reverse (x::xs) (reverse xs) ++ [x]

Much better (why?):

reverse xXxs = rev [] xs
where rev acc [] acc
rev acc (x:xs) rev (x:acc) xs

This looks a lot like £foldl; we can redefine reverse as:

reverse xs = foldl revOp [] =xs
where revOp a b = b : a

Or just as
reverse = foldl (flip (:)) []

10/06/05 PSU CS457/557 Spr'05 Tolmach

