CS 4577/557 Functional Programming

Lecture 3
O Actions; Graphics

09/20/05 PSU CS457/557 Fall'05 Tolmach

Can we be imperative?

— All the programs we have seen so far have no “side-effects.”
That is, programs are executed only for their values.

— But sometimes we want our programs to affect the real world
(reading, printing, drawing a picture, controlling a robot, etc).

— Yet, IO operations (and other “effectful” operations) don't mix
well with Haskell's lazy evaluation, because evaluation order is
very complicated and hard to predict.

— How can we reconcile purity and utility?

09/20/05 PSU CS457/557 Fall'05 Tolmach

Example: Using the Trace facility

« Hugs has a built-in facility for wrapping an expression with a string
that is to be printed whenever the expression is evaluated.

trace :: String -> a -> a

f x = trace "goodbye\n" (x+1)
a=1"Ff (trace "hello\n" 1)

g X = X + trace "goodbye\n" 1
b =g (trace "hello\n" 1)

« Even if order of evaluation is not an issue, being able to do 10
would violate “computation by calculation” paradigm, e.g.

C = X + X
where x = trace "hi!'\n" 1
versus
c = (trace "hi!\n" 1) + (trace "hi!'\n" 1)

09/20/05 PSU CS457/557 Fall'05 Tolmach 3

10 Actions

« In Haskell, “pure values” are separated from “worldly actions”, in
two ways:

— Types: An expression with type IO a has possible actions
associated with its execution, while returning a value of type a.

— Syntax: The do syntax performs an action, and (using layout)
allows one to sequence several actions.

« Example: code to read a character, echo it, and return Boolean
value indicating if it was a newline

do ¢ <- getChar
putChar c

return (c == '\n')

09/20/05 PSU CS457/557 Fall'05 Tolmach 4

Some Predefined 10 Actions

-- get one character from keyboard
getChar :: IO Char

-—- write one character to terminal
putChar :: Char -> IO()

-- get a whole line from keyboard
getLine :: IO String

-- read a file as a String
readFile :: FilePath -> IO String

-- write a String to a file
writeFile :: FilePath -> String -> IO ()

09/20/05 PSU CS457/557 Fall'05 Tolmach

The do Syntax

Let act be an action with type IO a.

Then we can perform act, retrieve its return value, and
sequence it with other actions, by using the do syntax:

do val <- act
-- the next action
-—- the action following that
return x -- final action may return a wvalue

Note that all actions following val <- act can use the
variable val.

The function return takes a value of type a, and turns it into
an action of type I0 a, which does nothing but return the
value.

09/20/05 PSU CS457/557 Fall'05 Tolmach

do Typing Details

I0 ()

(actions without
“v <= 7

ly have thi

|:: Char s :: I0 Bool
(the type of the last action also

c| <- determines the type of the entire
do expression)
dog¢

putChar c

return (c ==

09/20/05 PSU CS457/557 Fall'05 Tolmach

When are IO Actions Performed?

A value of type IO a is an action, but it is still a value: it
will only have an effect when it is performed.

In Haskell, a program’s value is the value of the variable
main in the module Main. That value must have type I0
a. The associated action will be performed when the
whole program is run.

In Hugs, however, you can type any expression to the
Hugs prompt. If the expression has type I0 a it will be
performed; otherwise its value will be printed on the
display.

There is no other way to perform an action (well, almost).

09/20/05 PSU CS457/557 Fall'05 Tolmach

Recursive Actions

getLine can be defined recursively in terms of simpler actions:

getlLine :: IO String
getLine =
do ¢ <- getChar -- get a character
if ¢ == "\n' -—- if it’s a newline
then return "" -- then return empty string
else do 1 <- getLine —-- otherwise get rest of
-- line recursively,

return (c:l) -- and return entire line

09/20/05 PSU CS457/557 Fall'05 Tolmach

Actions are just values

Actions are just like other (first-class) values: they can
be passed, returned, stored, etc.

For example, it can be handy to build lists of actions, e.g.
putCharList :: String -> [10 ()]
put CharList cs = [putChar ¢ | ¢ <- cs]

There's a library function to convert this to a single
action
sequence_ :: [IOa] ->10 ()

putStr :: String -> 10 ()
putStr s = sequence_ (put CharlList s)

Remember, actions are only executed at top level, e.g.
main = putStr “abc”

09/20/05 PSU CS457/557 Fall'05 Tolmach 10

Example: Unix we¢© Command

e The unix wc (word count) program reads a file and
then prints out counts of characters, words, and
lines.

« Reading the file is an action, but computing the
information is a pure computation.
« Strategy:
— Define a pure function that counts the number of
characters, words, and lines in a string.
» number of lines = number of ‘\n’

» number of words ~= number of ¢ ’ plus
number of ‘\t’

— Define an action that reads a file into a string,
applies the above function, and then prints out

the result.
09/20/05 PSU CS457/557 Fall'05 Tolmach

wct
wcf
wcf
wct
wcf
wct

wC

wWC =

09/20/05

Implementation

(Int,Int,Int) -> String -> (Int,Int,Int)

(cc,w,1lc) []
(cc,w,1lc) ('

= (cc,w,lc)
' : xXs) = wecf (cc+l,w+l,1lc) xs

(cc,w,lc) ('\t' : xs) wcf (cc+l,w+l,1lc) xs
(cec,w,1lc) ('\n' : xs) wcf (cc+l,w+l,lc+l) xs

(cc,w,1lc) (x

I0 ()
do name
contents

XSs) wcf (cc+l,w,lc) xs

<- getLine
<- readFile name

let (cc,w,lc) = wcf (0,0,0) contents

putStrLn
putStrLn
putStrLn
putStrlLn

(“The file: “ ++ name ++ “has V)
(show cc ++ “ characters “)
(show w ++ “ words “)

(show 1lc ++ ™ lines “)

PSU CS457/557 Fall'05 Tolmach

Example Run

Main> wc I typed this.

elegantProse. txt

The file: elegantProse.txt has
2970 characters
1249 words
141 lines

Main>

09/20/05 PSU CS457/557 Fall'05 Tolmach

Graphics Actions

* Graphics windows are traditionally programmed
using commands; i.e. actions.

* Some graphics actions relate to opening up a graphics
window, closing it, etc.

« Others are associated with drawing lines, circles, text,
etc.

09/20/05 PSU CS457/557 Fall'05 Tolmach

“Hello World” program using
Graphics Library

B Fesl venllpws

This imports a
library,
SCEG aphi cs,
which contains
many functions

Frllm wrnirel

import SOEGraphics
main0 =

runGraphics (

do w <- openWindow "First window" (300,300)
drawInWindow w (text (100,200) "hello world")
k <- getKey w
closeWindow w

09/20/05 PSU CS457/557 Fall'05 Tolmach

Graphics Operators

openWindow :: String -> Point -> IO Window
— Opens a titled window of a particular size.

drawInWindow :: Window -> Graphic -> IO ()
— Displays a Draw () value in a given window.
— Note that the return type is I0 () .

getKey :: Window -> IO Char

— Waits until a key is pressed and then returns the character
associated with the key.

closeWindow :: Window -> IO ()
— Closes the window.

runGraphics :: IO () -> IO ()

— Required “wrapper” around graphics operations to init/close

graphics system.
09/20/05 PSU CS457/557 Fall'05 Tolmach 16

Mixing Graphics IO
with Terminal 10

spaceClose :: Window -> IO ()
spaceClose w =
do k <- getKey w
if k == ' ' then closeWindow w
else spaceClose w

mainl =
runGraphics (
do w <- openWindow "Second Program'" (300,300)
drawInWindow w (text (100,200) “Hello Again")
spaceClose w

09/20/05 PSU CS457/557 Fall'05 Tolmach

Drawing Primitive Shapes

 The Graphics libraries contain simple actions for drawing a few
primitive shapes.

ellipse :: Point -> Point -> Graphic
shearEllipse :: Point -> Point -> Point -> Graphic
line :: Point -> Point -> Graphic

polygon :: [Point] -> Graphic

polyline :: [Point] -> Graphic

 From these we will build much more complex drawing programs.

09/20/05 PSU CS457/557 Fall'05 Tolmach

Coordinate System

Increasing x-axis

SIXg-A SUISBI.IU]

09/20/05 PSU CS457/557 Fall'05 Tolmach

main?2

Example Program

runGraphics (
do w <- openWindow "Draw some shapes" (300,300)

09/20/0%

drawInWindow w (ellipse (0,0) (50,50))
drawInWindow w

(shearEllipse (0,60) (100,120) (150,200))
drawInWindow w

(withColor Red (line (200,200) (299,275)))
drawInWindow w

(polygon [(100,100), (150,100), (160,200)1)
drawInWindow w

(withColor Green
(polyline [(100,200), (150,200),
(160,299), (100,200)1))
spaceClose w

PSU CS457/557 Fall'05 Tolmach

The Result

drawInWindow w
(ellipse (0,0) (50,50))
drawInWindow w B Draw some shapes
(shearEllipse (0,60)
(100,120)
(150,200))
drawInWindow w
(withColor Red
(line (200,200)

(299,275)))
drawInWindow w
(polygon [(100,100),
(150,100),
(160,200)1])
drawInWindow w
(withColor Green
(polyline
[(100,200), (150,200),
(160,299), (100,200)1))

09/20/05 PSU CS457/557 Fall'05 Tolmach

More Complex Programs

« We'd like to build bigger
programs from these small i Sipegimaki6 Trionale
pieces.

« For example:
— Sierpinski’s Triangle — a
fractal consisting of
repeated drawing of a

triangle at successively
smaller sizes.

« As before, a key idea is
separating pure computation
from graphics actions.

09/20/05 PSU CS457/557 Fall'05 Tolmach

Geometry of One Triangle

(x,y-size)
size? + size? = hyp?

Remember that y increases
as we go down the page

(x,y-size/2) Q_(xtsize/2,y-size/2)

X, x+size,
(¥) (x+size/2,y) (Y)

09/20/05 PSU CS457/557 Fall'05 Tolmach

Draw 1 Triangle

fillTri x y size w =
drawInWindow w
(withColor Blue

(polygon [(x,y), (x,y)
(x+size,y),

(x,y-size)]))

minSize =

09/20/05 PSU CS457/557 Fall'05 Tolmach

Sierpinski’s Triangle

(x,y-size)

sierpinskiTri w x y size =
if size <= minSize

then fillTri x y size w \\
else let size2 = size 'div 2 \

(x+size/2,y) (x+size,y)

in do sierpinskiTri w x y size2
sierpinskiTri w x (y-size2) sizeZ2

sierpinskiTri w (x + size2) y size2
main3 =

runGraphics (
do w <- openWindow "Sierpinski's Tri" (400,400)
sierpinskiTri w 50 300 256
spaceClose w

09/20/05 PSU CS457/557 Fall'05 Tolmach

Questions?

 Whats the largest triangle sierpinskiTri ever
draws?

 How do the big triangles appear?

09/20/05 PSU CS457/557 Fall'05 Tolmach

