CS 457/557 Functional Programming

Lecture 13
Animations

11/10/05 PSU C3457/557 Fall'05 Tolmach

Animations

An animation is a “moving” graphic.

— Sometimes we say a time-dependent graphic, since where it
“moves” to is dependent upon time.

To create the illusion of “movement” we need draw
frames with a different picture each frame.

— A frame rate of about 30 frames a second is optimal

— less than 15-20 appears to flicker

— greater than 30 gives no apparent improvement

To draw a frame we need to erase the old frame before
drawing the new frame.

All our drawings have been accumulative (we never
erase anything, just draw “over” what’s already there).

There exist several strategies for frame drawing.

11/10/05 PSU C3457/557 Fall'05 Tolmach

Butfered graphics

« Display devices display the information stored in the
video memory.

« Buffered graphics use two sets of memory,
instantaneously switching from one memory to the
other, so quickly that the flicker effect is unobservable.

HIER

This video memory free for
writing while the other is displayed

11/10/05 PSU C3457/557 Fall'05 Tolmach

Haskell interface to buftered graphics

Usual tick rate = 30 :I

° get W ndowTi ck :: W ndow -> | q) times per second

— Every window has an internal timer. getWindowTick “waits” for
the next “tick” (since the last call to getWindowTick) before it
returns. If the next “tick” has already occurred it returns
immediately.

e getTinme :: 10O Integer

— Returns the current time, measured in milliseconds, counting
from some arbitrary point. By itself, means nothing, but the
difference between successive calls accurately measures
elapsed time.

e sSetGaphic :: Wndow -> G aphic -> 1Q()

— Writes the graphic into the “free” video graphic buffer. At the
next frame “tick” what’s in the “free” video buffer will be
drawn, and the current buffer will become the free buffer.

11/10/05 PSU C3457/557 Fall'05 Tolmach

Interface to the richer window interface

Old interface:
openWndow :: String -> Point -> | O Wndow
e.g. openW ndow “title” (w dth, hei ght)

Richer interface:

openW ndowex :: String -> Maybe Point ->
Maybe Point -> (Gaphic -> Drawkun) ->
Maybe Wrd32 -> | O W ndow

openW ndowkx “title”
(Just(Xx,VY)) -- upper left corner
(Just (w dt h, hei ght))
dr awBuf f eredG aphic -- draw ng node
(Just 30) -- refresh rate

11/10/05 PSU C3457/557 Fall'05 Tolmach

Animations in Haskell

type Animation a = Tine -> a
type Tine = Fl oat

bl ueRubberBall :: Animation G aphic
bl ueRubberBall t = w thCol orBl ue (
shapeToG aphi ¢ (
Ellipse (sint) (cos t)))

animate :: String -> Animation Gaphic -> 1 ()

mai n1 = ani mat e
"Ani mati on of a Shape" bl ueRubber Bal |

11/10/05 PSU C3457/557 Fall'05 Tolmach

Shape pulses from

this. S

to this: Q
to this: O

= Animation of a Shape

11/10/05 PSU C3457/557 Fall'05 Tolmach

The ani nmat e function

animate :: String -> Animation Graphic -> 10 ()

animate title anim = runG aphics (
do w <- openWndowkx title (Just (0,0)) (Just(xWn,yWn))
dr awBuf f er edG aphi ¢ (Just 30)
t0 <- getTine
l et |oop =
dot <- getTine
let ft = from nteger (t-t0) / 1000
set Gaphic w (animft)
get W ndowTi ck w
| oop

11/10/05 PSU C3457/557 Fall'05 Tolmach

Alternative Definition

« We made ani mat i on a polymorphic type constructor so

that we could describe time-varying behaviors of types
other than G aphi c.

« Could rewrite example like this:
rubberBall :: Animation Shape
rubberBall t = Ellipse (sint) (cos t)

mainl :: 10 ()
mai nl = animate “Animation of a Shape”
(w t hCol or Bl ue .
shapeToG aphi c .
rubberBal |)
» Note convenience of composition here.

11/10/05 PSU C3457/557 Fall'05 Tolmach

Complex Animations

revolvingBall :: Animation Region
revol vingBal | t
= |let ball = Shape (Ellipse 0.2 0.2)
In Translate (sin t, cos t) ball

planets :: Animation Picture
pl anets t
= |l et pl = Region Red (Shape (rubberBall t))
p2 = Region Yellow (revolvingBall t)
in pl Over p2

tell Time :: Animation String
tell Time t = "The tine is: " ++ showt

11/10/05 PSU C3457/557 Fall'05 Tolmach

Telling Time

mai N2 = aninate "Ani mated Text”
(text (100,200) . tell Tine)

= Animated Text

The time changes
as time advances

11/10/05 PSU C3457/557 Fall'05 Tolmach

Revolving Circle

regi onToG aphic :: Region -> Gaphic
regi onToG aphi ¢ = drawRegi on . regi onToGRegi on

mai N3 = ani mate " Ani mat ed Regi on"
(w thCol or Yellow . regionToG aphic .
revol vi ngBal |)

11/10/05 PSU C3457/557 Fall'05 Tolmach

Animating Pictures

picToGraphic :: Picture -> Graphic
pi cToG aphic (Region c r)

= W thColor ¢ (regionToG aphic r)
pi cToG aphic (pl Over p2)

Case analysis over
structure of picture.

Use the primitives
“overGraphic’
&

wthraphic

= picToG aphic pl overGaphic picToG aphic p2

pi cToG aphic EnptyPic = enptyG aphic

mal n4 = ani nate " Ani nat ed Pi cture"

(pi cToG aphic . planets)

11/10/05 PSU C3457/557 Fall'05 Tolmach

Lifting primitives to animations

o It's useful to define “time varying” primitives, e.g.
type Anim = Aninmation Picture

o First an Ani mwhich doesn’t really vary

enptyA :: Anim I
enptyA t = EnptyPic Anim =

Animation Picture =
Time -> Picture
hence the time

« Combining time varying pictures parametert
overA :: Anim-> Anim -> AnimV
overA al a2t = alt Over a2t

overManyA :: [Anim -> Anim
over ManyA = fol dr over A enptyA

11/10/05 PSU C3457/557 Fall'05 Tolmach

Time Translation

timeTransA :: (Time -> Tine) ->
Animation a -> Animation a

or

timeTransA :: Animation Tine ->
Animation a -> Animation a

tineTransAf at =a (f t)

or
tinmneTransA f a a .

timeTransA (2*) anim runs twice as fast
timeTransA (5+) anim runs 5 seconds ahead

11/10/05 PSU C3457/557 Fall'05 Tolmach

Example

rBall :: Anim
rBall t = let ball = Shape (Ellipse 0.2 0.2)
i n Region Red (Translate (sint, cos t) ball)

rBalls :: Anim
rBall s = over ManyA
[timeTransA ((t*pi/4)+) rBall | t

main5 = aninate "Lots of Balls"
(picToG aphic . rBalls)

Each ball rotates
pi/4 seconds behind
the one in front of it

11/10/05 PSU C3457/557 Fall'05 Tolmach

