CS 457/557 Functional Programming

Lecture 12
Qualified Types and Type Classes

11/08/05 PSU C3457/557 Fall'05 Tolmach

The Haskell Class System

Think of a qualified type as a type with extra
requirements.

Types which meet those requirements have "extra"
functionality.

A class definition defines the function signatures for the
"extra" functionality.

An instance declaration defines the "extra"
functionality for a particular type.

11/08/05 PSU C3457/557 Fall'05 Tolmach

Why type classes?

Consider the elem function for searching a list:

elemx [] = Fal se

elemx (y:ys) | x ==y = True

| otherwise = x elem ys

What should its type be? Something like

elem:: a ->[a] -> Bool
But this is too general, since elem only makes sense on
lists whose members can be compared for equality.

What things can't be? Functions, new data types for which ==
hasn't been written, ...

Want the type of elem to reflect this restriction.

Solution: define type classes and use them to describe
restrictions.

11/08/05 PSU C3457/557 Fall'05 Tolmach

Prototypical type class: Eq

 Class definitions specity which methods (functions) must
be defined on the type for it to be a member of the class.

class Eq a where

(==) .. a -> a -> Bool
 Qualified types include class constraints on type variables
elem:: EqQ a => a -> [a] -> Bool

and types like this will be automatically infered for function
definitions that use ==.

« Type qualifiers on functions propagate with use:
elemAll :: Eqg a => a ->[[a]] -> Bool
elemAll x yss = all (elemXx) yss
find :: (Eq a,Show a) => a ->[a] -> String
find x xs | x elem x = “Found “ ++ (show Xx)
| otherwse = “Can't find “ ++ (show x)

11/08/05 PSU C3457/557 Fall'05 Tolmach 4

Instance Declarations

— Instance declarations allow us to add new types to a

class.
data Color = Red | G een | Blue
| nstance Eg Col or where

Red == Red = True
G een == G een = True
Blue == Blue = True
_ == = Fal se
— Now we can use == on Col or values.
(Bl ue == Red) == Fal se

hasRed :: [Col or] -> Bool
hasRed cs = Red elem cs

11/08/05 PSU C3457/557 Fall'05 Tolmach

Fancier instance definitions

What about parameterized types? Can they be
instances? Yes, if properly qualified!

| nstance Eq a => Eq (Nhybe a) where
Nothing == Nothing = True
(Just x) == (Just y) = ==
== = Fal se

Note that use of == in body is at type a, not Maybe a.

So instance definition must be qualified too: we can
only compare two (Maybe a) values if we can
compare two a values.

The same idea works for lists and other “container
types.”

11/08/05 PSU C3457/557 Fall'05 Tolmach

Fancier Class declarations

A class can specity multiple methods, and give default
definitions for these methods.

class Eqg a where
(==) :: a -> a -> Bool
(/=) :: a->a -> Bool
X /=y =not (X ==1Y)
Now we can use / = on any values of a type belonging to

class EqQ. Instance declarations don't have to define / =
assuming that the default implementation is ok.

allDifferent :: EqQq a => a -> a -> a -> Bool
allDifferent xy z=x/=y & X [=2z2 &Yy [= 2z
In fact, Eq also contains a default method for ==
X ==y =not (x /=1Yy)
Must define at least one of == or /= to avoid infinite loops!

11/08/05 PSU C3457/557 Fall'05 Tolmach 7

Inheritance in Class Definitions

We may want to use a class method when defining default
operations for another class:

class Eg a => Od a where
(), (<=),(>),(>=) :: a->a -> Bool
x <=y =(x<y) ||l (x==Y)
x >=y =(x>y) || (x==Y)
These definitions for <= and >= only make sense if == is

defined on type a. This is what the Eq a => qualifier
means. We say Or d a inherits from Eq a.

Think of classes as collections of types: since any type
belonging to O d must belong to Eq, we say that Or d is a

subclass of Eq (or Eq is a superclass of O d).

Somewhat similar to object-oriented ideas, but not quite
the same!

11/08/05 PSU C3457/557 Fall'05 Tolmach 8

(Parts of) Some Prelude Classes

Eq, Ord.

Enumerable types:
cl ass Enum a where

toEnum :: Int -> a
fromEnum:: a -> Int
enunfFromlo :: a -> a -> [4]
» [a .. Db] isjustsyntactic sugar for (enunfronilo a b)
Viewable types:
cl ass Show a where
show :: a -> String
Parseable types:
cl ass Read a where
read :: String -> a

» Type inferencer must rely on context to determine result type a.

11/08/05 PSU C3457/557 Fall'05 Tolmach

Predefined and Derived Instances

The Prelude already has appropriate instance
definitions for the types and classes defined there.

» Almost all types except IO, (->) belong to Eq, Ord, Show, Read
To put newly defined types into standard classes

requires an instance declaration. Writing these is
typically straightforward, but tedious.

For certain Prelude classes, Haskell allows us to derive
the instance definition for a new type automatically.

—Eq, Od, Enum Show, Read, Bounded, 1IX

Example Uses of deriving classes
data Color = Red | G een | Blue
deriving EqQ
data Exp = Int Int | Plus Exp Exp | M nus Exp Exp
deri vi ng (Eg, Show)

11/08/05 PSU C3457/557 Fall'05 Tolmach

Some numeric classes (lightly wrong)

class (Eq a, Show a) => Num a where
(+), (-), (*) 1 a->a->a
negate, abs, signum:: a -> a
from nt eger .. Integer -> a
class Numa => Fractional a where
(/) :: a->a->a
recip :: a -> a
fronRat i1 onal .. Rational -> a
class (Numa, Od a) => Integral a where
div, nod :: a ->a -> a
tolnteger :: a -> Integer

11/08/05 PSU C3457/557 Fall'05 Tolmach

Numeric Types and Literals

e Classes form a hierarchy. Omitting some intermediate
classes, we have:

| nt (fixed-precision integers) belongs to | nt egr al .

| nt eger (arbitrary-precision integers) belongs to
| nt egral .

Integral a => Ratio a belongstoFracti onal
Rational = Ratio |nteger
FIl oat, Doubl e belongto Fracti onal

 Literals have very general types for maximum flexibility
3 issyntactic sugar for (from nteger 3)

3. 14 issyntactic sugar for (fronRati onal (314/100))

11/08/05 PSU C3457/557 Fall'05 Tolmach

12

Defining your own Classes

* You can define your own classes and add new or existing
types to them. E.g. , we had:

contai nsS :: Shape -> Point -> Bool
contai nskR :: Region -> Point -> Bool
e Can abstract:
class PCt where -- point containnment
contains :: t -> Point -> Bool

| nst ance PC Shape where
contains = containsS
| nst ance PC Regi on where
contains = contal nsR
« Now can write:
Rectangle 2 3 "contains p -- uses containsS
(rl "union r2) "contains p -- uses containsR

11/08/05 PSU C3457/557 Fall'05 Tolmach 13

Implicit invariants of Type Classes

When we define a type class (especially those with
multiple methods) we often want some things to be
true about the way the methods interact.
In Haskell we can’t make these invariants explicit
class Eq a where
(==), (/=) :: a -> a -> Bool
X =y = not (Xx==vy)
Desirable invariants:
a <=> b == a

a==Db&& b ==c = a-==c
But this is perfectly legal:
| nstance Eq Col or where
Red == _ Fal se
Bl ue == _ True

11/08/05 PSU C3457/557 Fall'05 Tolmach

