CS 457/557 Functional Programming

Lecture 11
Proving Program Properties

Recall the calculation proof method

- Substitution of equals for equals.
- Based on definitions or previously proved theorems.
- For example consider:

```
(f \cdot g) \times = f (g \times)  (comp)
```

- Notice label on equation
- Now prove that composition is associative, i.e.

```
((f . g) . h) x = (f . (g . h)) x
```

Can use known equations in either direction.

Example: Proof by calculation

 Pick one side of the equation and transform using rule comp above

```
((f \cdot g) \cdot h) x =
by comp (left to right)
(f \cdot g) (h \cdot x) =
by comp (left to right)
f(g(h x)) =
by comp (right to left)
f((g.h)x) =
by comp (right to left)
(f . (g . h)) x
```

Example With Regions

- Consider the algebra of Shapes (Ch. 8)
- Suppose we have already proved (Hudak p.100-101):

```
r 'Union' Empty = r
                                      (Axiom 4a)
                                      (Axiom 4b)
   r `Intersect` univ = r
                                      (Axiom 5a)
   r `Union` Complement r = univ
   r `Intersect` Complement r = Empty (Axiom 5b)
   r1 `Union` (r2 `Intersect` r3) (Axiom 3b)
      = (r1 `Union` r2) `Intersect` (r1 `Union` r3)
• Prove: r `Union` r = r
   r = (by Axiom 4a)
   r `Union` Empty = (by 5b)
   r `Union` (r `Intersect` Complement r) = (by 3b)
   (r `Union` r) `Intersect` (r `Union` Complement r)=
   (r `Union` r) `Intersect` univ = (by 4b) (by 5a)^
    r 'Union' r
```

Proofs by induction over finite lists

 Format over lists Let $P\{x\}$ be some proposition (I.e. $P\{x\}$:: Bool) i.e. P is an expression with some free variable x :: [a] x has type :: [a] x may occur more than once in $P\{x\}$ e.g. length x = length (reverse x) all p x => p (head x)sum (x ++ y) = sum x + sum ymap f (x ++ y) = map f x ++ map f y

(map f . map g) x = map (f . g) x

- Then to prove P for all finite lists, we:
 - 1) Prove P { [] }
 - 2) Assume P{xs} and then Prove P{x:xs}

Example: relating map and length

• Definitions and Laws: (These are things we get to assume are true)

```
length[] = 0
                                (1)
length (x:xs) = 1 + length xs
                                (2)
                                (3)
map f [] = []
map f (x:xs) = f x: map f xs (4)
```

• **Proposition:** (This is what we are trying to prove)

```
P\{xs\}: length (map f xs) = length xs
```

- Proof Structure:
 - 1) Prove P{[]}:

```
length (map f []) = length []
```

-2) Assume $P\{xs\}$: (as well as the definitions and laws)

```
length (map f xs) = length xs
Then Prove P\{x:xs\}:
length (map f (x:xs)) = length (x:xs)
```

Proof

```
1) Prove: length (map f []) = length []
    length (map f []) = (by 3: map f [] = [])
    length []
2) Assume: length(map f xs) = length xs
 Prove: length(map f (x:xs)) = length (x:xs)
   length (map f (x:xs)) =
                  (by 4: map f (x:xs) = f x: map f xs)
   length (f x:(map f xs)) =
                  (by 2: length (x:xs) = 1 + (length xs))
   1 + length(map f xs) = (by IH)
   1 + length xs =
                 (by 2: length (x:xs) = 1 + length xs)
   length (x:xs)
```

Example: Relating sum and ++

• Definitions and Laws: (These are things we get to assume are true)

```
sum [] = 0
sum (x:xs) = x + (sum xs)
(2)
[] ++ ys = ys
(x:xs) ++ ys = x:(xs ++ ys)
(4)
```

• **Proposition:** (This is what we are trying to prove)

```
P\{xs\} = sum (xs ++ ys) = sum xs + sum ys
```

- why do we do induction on the first argument of ++?
- Proof Structure:
 - 1) Prove P{[]}:
 sum ([] ++ ys) = sum [] + sum ys
 - -2) Assume $P\{xs\}$: (as well as the definitions and laws)

```
sum (xs ++ ys) = sum xs + sum ys
Then Prove P{x:xs}:
    sum ((x:xs) ++ ys) = sum (x:xs) + sum ys
```

Proof

```
1) Prove: sum ([] ++ ys) = sum [] + sum ys
    sum([] ++ ys) = (by 3: [] ++ ys = ys)
                        (arithmetic: 0 + n = n)
    sum ys =
                  (by 1: sum [] = 0 )
    0 + sum ys =
    sum [] + sum ys
2) Assume: sum (xs ++ ys) = sum xs + sum ys
  Prove: sum ((x:xs) ++ ys) = sum (x:xs) + sum ys
   sum ((x:xs) ++ ys) =
                        (by 4: (x:xs) ++ ys = x:(xs ++ ys))
   sum (x:(xs++ys)) = (by 2: sum (x:xs) = x + (sum xs))
   x + sum(xs++ys) = (by IH)
   x + (sum xs + sum ys) = (associativity of +: (p + q) + r = p + (q + r))
   (x + sum xs) + sum ys = (by 2: sum (x:xs) = x + (sum xs))
   sum(x:xs) + sum ys
```

Proof by induction using Case Analysis

• Prove by induction:

```
P\{xs\} == (takeWhile p xs) ++ (dropWhile p xs) = xs
```

• Where:

```
(1) [] ++ ys = ys
```

- (2) (x:xs) ++ ys = x : (xs ++ ys)
- (3) dropWhile p [] = []
- (4) dropWhile p (x:xs) =
 if p x then (dropWhile p xs)
 else x::xs
- (5) takeWhile p [] = []
- (6) takeWhile p (x:xs) =
 if p x then x:(takeWhile p xs)
 else []

Base and Inductive cases

```
    Base case: P{[]}
    (takeWhile p []) ++ (dropWhile p []) = (by 3,5)
    [] ++ [] = (by 1)
    []
```

• Induction Step:

```
P{ys} \Rightarrow P{y:ys}
```

Assume:

```
(takeWhile p ys) ++ (dropWhile p ys) = ys
```

Prove:

```
(takeWhile p (y:ys)) ++ (dropWhile p (y:ys)) = (y:ys)
```

Split Proof

```
(takeWhile p (y:ys)) ++ (dropWhile p (y:ys)) = (by 4,6)
(if p y then y : (takeWhile p ys)
      else []) ++
(if p y then (dropWhile p ys)
      else y:ys)
```

- Now, either (p y) = True or (p y) = False
- So split problem by doing a case analysis

Case 1: Assume: p y = True

```
(if p y then y: (takeWhile p ys) else []) ++
  (if p y then (dropWhile p ys) else y:ys) = (by case assumption)
(y: (takeWhile p ys)) ++ (dropWhile p ys) = (by 2)
y: ((takeWhile p ys) ++ (dropWhile p ys)) = (by I.H.)
y: ys
```

Case 2: Assume: p y = False

```
(if p y then y : (takeWhile p ys)else []) ++
(if p y then (dropWhile p ys) else y:ys) = (by case assumption)
[] ++ (y:ys) = (by 1)
```

y:ys

Structural Induction over Trees

```
data Bintree a = Lf a
         (Bintree a) :/\: (Bintree a)
      » Note all infix constructors start with a colon (:)

    Assume the following definitions and facts:

      sumtree :: Bintree a -> Int
   (1) sumtree (Lf x) = x
   (2) sumtree (a :/\: b) = (sumtree a) + (sumtree b)
      flatten :: Bintree a -> [a]
   (3) flatten (Lf x) = [x]
   (4) flatten (a :/\: b )=(flatten a) ++ (flatten b)
   (5)sum [] =0
   (6) sum (x:xs) = x + (sum xs)
   (7) Lemma: sum(xs ++ ys) = (sum xs) + (sum ys)
```

Proofs on Trees

To prove a proposition P{t} about all trees t, must prove it for each tree constructor, assuming it is true for all smaller trees.

So, to prove P{t} on a Bintree, we must:

```
- Prove P{Lf x}
- Prove that P\{a\} \&\& P\{b\} => P\{a : / : b\}
Example: Prove P(t): sum(flatten t) = sumtree t
case 1: Prove P{Lf x}: sum(flatten (Lf x)) =
                   sumtree (Lf x)
sum(flatten (Lf x)) = (by 3: flatten (Lf x) = [x])
   sum[x] =
                     (by 6: sum (x:xs) = x + sum xs)
   x + (sum []) = (by 5: sum [] = 0)
                     (by arithmetic: x + 0 = x)
   x + 0 =
                       (by 1: sumtree(Lf x) = x)
   \mathbf{x} =
   sumtree (Lf x)
```

Case 2

```
case 2: Prove P\{a\} \&\& P\{b\} => P\{a : / : b\}
Assume: 1) P{a}: sum(flatten a) = sumtree a
       2) P{b}:sum(flatten b) = sumtree b
Prove: P\{a : / : b\}: sum(flatten (a : / : b)) =
                  sumtree(a :/\: b)
   sum(flatten (a :/\: b)) =
       by 4
   sum ((flatten a) ++ (flatten b)) =
       by lemma: 7
   sum(flatten a) + sum(flatten b)=
       by I.H. (twice)
   (sumtree a) + (sumtree b) =
       by 2
   sumtree (a :/\: b)
```