CS 457/557 Functional Programming

Lecture 11
Proving Program Properties

11/03/05 PSU C457/557 Fall '05 Tolmach

Recall the calculation proof method

Substitution of equals for equals.
Based on definitions or previously proved theorems.

For example consider:
(f . 9) x=1 (g x)

— Notice label on equation

Now prove that composition is associative, i.e.
((f .. g . h) x=(f. (g. h)) x

— Can use known equations in either direction.

11/03/05 PSU C457/557 Fall '05 Tolmach

Example: Proot by calculation

» Pick one side of the equation and transform using rule
comp above

((f . g) . h) x =
by comp (left to right)

(f . g) (hx)=
by comp (left to right)

f (9 (hx)) =
by comp (right to left)

£f ((g . h) x) =
by comp (right to left)

(f . (9 - h)) x

11/03/05 PSU C457/557 Fall '05 Tolmach

Example With Regions

« Consider the algebra of Shapes (Ch. 8)

. Suppose we have already proved (Hudak p.100-101):

r Union Enpty = (Axiom 4a)

r Intersect univ =171 (Axiom 4b)

r Union Conplenent r uni v (Axiom 5a)

r " Intersect Conplenent r = Enpty (Axiom 5b)

rl Union (r2 Intersect r3) (Axiom 3b)

= (rl "Union r2) Intersect (rl Union r3)

e Prove: r "Union r =

r = (by Axiom 4a)

r “Union Enpty = (byb5b)

r Union (r "Intersect Conplenent r) = (by3b)

(r "Union r) “Intersect (r "Union Conplenent r)=
(r Union r) “Intersect univ = (by4b) (by 5a)A

r “uUnion r

11/03/05 PSU C457/557 Fall '05 Tolmach 4

Proots by induction over finite lists

e Format over lists
Let P{x} be some proposition (I.e. P{x} :: Bool)

i.e. P is an expression with some free variable x :: [a]
— xhastype:: [a]
— xmay occur more than once in P{x}

e.g.
| ength Xx | ength (reverse x)
all p x == p (head x)
sum (x ++ y) = sumx + sumy
mp f (x ++y) =map f x ++ map f vy
(mep f . map g) x = map (f . g) X

« Then to prove P for all finite lists, we:
1) Prove P {[]}
2) Assume P{xs} and then
Prove P{x:xs}

11/03/05 PSU C457/557 Fall '05 Tolmach

Example: relating map and length

e Definitions and Laws: (These are things we get to assume are true)

length [] = 0O (1)
|l ength (x:xs) =1 + length xs (2)
map T [] =[] (3)
map f (x:xs) =f x: map f Xxs (4)

. PI‘OpOSitiOHZ (This is what we are trying to prove)
P{xs}: length (map f xs) = length xs
e Proof Structure:
— 1) Prove P{[] }:
length (map f []) = length []
— 2) Assume P{Xs}: (as well as the definitions and laws)

length (map f xs) = length xs
Then Prove P{x: xs}:
length (map f (x:xs)) = length (Xx:Xxs)

11/03/05 PSU C457/557 Fall '05 Tolmach

Proof

1) Prove:length (map f []) = length []

length (map f []) = (by3:map f [] =[])
| ength []
2) Assume: | ength(map f xs) = length xs
Prove:length(map f (x:xs)) = length (x:xs)

length (map f (Xx:xs)) =

(by4: map £ (x:xs) = f x: map f xs)
length (f x:(map f xs)) =

(by 2: length (x:xs)
1 + length(map f xs) = (byIH)
1 + length xs =

(by 2: 1length (x:xs) = 1 + length xs)

1 + (length xs))

| ength (X:XxS)

11/03/05 PSU C457/557 Fall '05 Tolmach 7

Example: Relating sum and ++

e Definitions and Laws: (These are things we get to assume are true)
sum[] =0 (1)
sum (X: Xxs) = X + (sum xs) (2)
[] ++ ys =ys (3)
(X:XS) ++ ys = X:(Xs ++ ys) (4)
. Proposition: (This is what we are trying to prove)
P{xs}=sum (xXs ++ ysS) = sum XS + sumys
— why do we do induction on the first argument of ++?

e Proof Structure:
— 1) Prove P{[] }:
sum ([] ++vys) =sum [] + sum ys
— 2) Assume P{Xs}: (as well as the definitions and laws)
sum (xs ++ ys) = sum xXxs + sum ys
Then Prove P{x: xs}:
sum ((x:xs) ++ ys) = sum (X:xs) + sum ys

11/03/05 PSU C457/557 Fall '05 Tolmach

Proof

1) Prove: sum ([] ++ ys) = sum[] + sumys
sum ([] ++ ys) = (by 3: [] ++ys =ys)
sumys = (arithnetic: 0 + n =
0O + sumys = (by 1. sum|[] = 0)
sum[] + sumys

2) Assume: sum (Xs ++ ysS) = sum XS + sumys
Prove: sum ((x: xs) ++ ys) = sum (Xx:XS) + sumys
sum ((x:xs) ++yS) = (by 4: (X:XS) ++ yS = X:(XS ++VS))
sum (X:(xs++ys)) = (by 2: sum (x:xs) =X + (sum xs))
X + sum(xs++ys) = (by IH)
X + (Sum xs + sum ys) (associativityof +: (p+q@) +r=p+(q+1))
(X + sum XxS) + sum ys (by 2: sum (x:xs) =X+ (sum xs))
sum (x:Xs) + sum ys

11/03/05 PSU C457/557 Fall '05 Tolmach

Proof by induction using Case Analysis

« Prove by induction:
P{xs} == (takeWiile p xs) ++ (dropWile p xs) = xs

e Where:

(1) [[++ys=ys
(2) (x:xS) ++ys=X: (XS ++VS)

(3) dropWhile p [] =]
(4) dropWhile p (x:xs) =
if p x then (dropWhile p xs)
else x::xs

(5) takeWhilep [] =]
(6) takeWhile p (x:xs) =
if p x then x:(takeWhile p xs)
else []

11/03/05 PSU C457/557 Fall '05 Tolmach

Base and Inductive cases

e Base case: P{[]}
(takeWhile p []) ++ (dropWhile p []) = (by 3,5)
l++[] =(byl)
]

» Induction Step:
P{ys} => P{y:ys}
Assume:
(takeWhile p ys) ++ (dropWhile p ys) =ys

Prove:
(takeWhile p (y:ys)) ++ (dropWhile p (y:ys)) = (y: ys)

11/03/05 PSU C457/557 Fall '05 Tolmach

Split Proot

(takeWhile p (y:ys)) ++ (dropWhile p (y:ys)) = (by 4,6)

(if p y then y : (takeWhile p ys)
else []) ++
(if p y then (dropWhile p ys)
else y:ys)

 Now, either (py) =True or (py)=False
 So split problem by doing a case analysis

11/03/05 PSU C457/557 Fall '05 Tolmach

Case 1: Assume: py="True

(if p y then y: (takeWhile p ys) else []) ++
(if p y then (dropWhile p ys) else y:ys) = (by case assumption)

(y : (takeWhile p ys)) ++ (dropWhile p ys) = (by 2)

y : ((takeWhile p ys) ++ (dropWhile p ys)) = (by I.H.)

y-ys

11/03/05 PSU C457/557 Fall '05 Tolmach

Case 2: Assume: p y = False

(if p y then y : (takeWhile p ys)else []) ++
(if p y then (dropWhile p ys) else y:ys) = (by case assumption)

[] ++ (y:ys) = (by 1)

y:ys

11/03/05 PSU C457/557 Fall '05 Tolmach

Structural Induction over Trees

data Bintree a = Lf a
| (Bintree a) :/\: (Bintree a)
» Note all infix constructors start with a colon (:)

« Assume the following definitions and facts:

suntree :: Bintree a -> Int

(1) suntree (Lf x) = x

(2)suntree (a :/\: b) = (suntree a) + (suntree b)
flatten :: Bintree a -> [a]

(3) flatten (Lf x) = [X]

(4) flatten (a :/\: b)=(flatten a) ++ (flatten b)

(5)sum|[] =0
(6) sum (X:Xs) = X + (sum XS)
(7) Lemma:sun(Xxs ++ ys) = (sum xs) + (sumys)

11/03/05 PSU C457/557 Fall '05 Tolmach

Proofs on Trees

To prove a proposition P{t} about all trees t, must prove it for each tree
constructor, assuming it is true for all smaller trees.

So, to prove P{t} on a Bintree, we must:
— Prove P{Lf x}
— Prove that P{a} && P{b} =>P{a :/\: Db}

Example: Prove P{t }: sun{flatten t) = suntree t

case 1: Prove P{Lf x}:sunm(flatten (Lf x)) =
suntree (Lf Xx)
sum(flatten (Lf x)) = (by 3: flatten (Lf x) = [X])
sum [X] = (by 6: sum (Xx:XS) = X + sum XS)
+ (sum|[]) = (by 5: sum|[] = 0)
+ 0 = (by arithnmetic: x + 0 = x)
= (by 1: suntree(Lf Xx) = Xx)
suntree (Lf Xx)

11/03/05 PSU C457/557 Fall '05 Tolmach

Case 2

case 2: Prove P{a} && P{b} =>P{a :/\: Db}
Assume: 1) P{al:sun(flatten a) = suntree a
2) P{b}:sum(flatten b) = suntree b
Prove:P{a :/\: bl:sum(flatten (a :/\: b))=
suntree(a :/\: b)

sum(flatten (a :/\: b)) =

by 4

sum ((flatten a) ++ (flatten b)) =
by lemma: 7

sun(flatten a) + sun(flatten b)=
by I.H. (twice)

(suntree a) + (suntree b) =
by 2

suntree (a :/\: b)

11/03/05 PSU C457/557 Fall '05 Tolmach

