CS 457/557 Functional Programming

Lecture 1
Course Overview and Introduction

09/20/05 PSU CS457/557 Fall'05 Tolmach

Course Information

« CS457/557 - Functional Programming
— Tuesday & Thursday 2:00-3:30pm
— NH 341
— Guest Instructor: Mark Jones
— Regular Instructor (starting with 4™ lecture): Andrew Tolmach
— Phone: 725-5492
— Email: apt@cs.pdx.edu
— Office hours: TuTh 4-5 or by appt.
— Web page: http://www.cs.pdx.edu/~apt/cs457

* Assignments:
— Weekly programming assignments, due Tuesdays (40%)

« Exams:
— Midterm exam (30%); Final exam (30%)

09/20/05 PSU CS457/557 Fall'05 Tolmach

Texts

Text Book (for basic Haskell techniques)

— Paul Hudak, “The Haskell School of Expression,” Cambridge
University Press, 2000.

Auxiliary text:

— Simon Thompson, “Haskell: The Craft of Functional
Programming”, 2™ ed., Addison-Wesley, 1999.

Handouts of other papers for more advanced topics

Copies of lecture slides are available from web page
— Thanks to Tim Sheard for many of the slides.

Web page will be also be used to distribute other course
material electronically

09/20/05 PSU CS457/557 Fall'05 Tolmach

What does “functional” mean?

* Programs consist of functions with no side-effects
— “Applicative” style
— Input/output description of problem
— Build programs by function composition
— No accidental coupling between components

— Flexible evaluation order

« Functions are “first class” values
— Pass as parameters
— Return as value of a function
— Store in data-structures

— Supports higher-level, “declarative” programming style

09/20/05 PSU CS457/557 Fall'05 Tolmach

Functional Languages

Applicative style
— Encouraged or required, depending on language.

First-class functions

Emphasis on types

— Built-in support for lists and other recursive data types

— Type inference = strong static type checking but no
declarations needed

— Type system separates pure computations from actions
(computations with side effects)

Automatic memory management

— Garbage collection; no new or malloc

Emphasis on (informal) program proof

— Easy laws for program transformation
09/20/05 PSU CS457/557 Fall'05 Tolmach

Why/how study Functional
Programming?

Learn a new way of thinking about problem solving.

Learn a new way to specify and implement programs.
Learn by doing. (Homework is essential!)

Important examples of functional languages
— Lisp, Scheme
» “strict,” impure, dynamically typed
— Standard ML, CAML
» “strict,” impure, statically typed
— Haskell, Miranda
» “lazy”, pure, statically typed

09/20/05 PSU CS457/557 Fall'05 Tolmach

Haskell

Developed by committee in late 1980’s

— Combined and standardized several earlier languages.
— Now dominant “lazy” pure FP language.
— Current stable version is “Haskell 98”

— Many experimental extensions available.
We will use an interpreter called Hugs.
— Available for most platforms

— Installed on PSU Solaris network (package hugs)

— Easy to download to your PC (get Hugs98, November2002
version)

There are also other interpreters, compilers.

— May want to explore.

The Haskell homepage has lots of useful information:
— http://www.haskell.org

09/20/05 PSU CS457/557 Fall'05 Tolmach

Prelude>
7
Prelude>
13
Prelude>
2.0
Prelude>
9
Prelude>
4
Prelude>

Simple expressions in Hugs

5+2

5 * 2 + 3

sgrt 4.0

sum [2,3,4]

length [2,3,4,5]

sort [3,4,1,2,77,6]

[1, 2, 3, 4, 6, 77]

Prelude>

09/20/05

PSU CS457/557 Fall'05 Tolmach

Syntactic Elements

« Identifiers start with a lower case letter followed by
letters, digits, primes, or underscores

— Valid Examples: a a3 ab’ aF a b7
— Invalid Examples: F1 Good

— Excludes these reserved words:
» case class data default deriving do else if
» import in infix infixl infixr instance let module

» newtype of then type where as qualified hiding
« Types and constructors start with upper case letter
— Examples: Int Bool True False Just

— Some special cases: [] : (,)

09/20/05 PSU CS457/557 Fall'05 Tolmach

Syntactic Elements (cont.)
* Operators

— Formed by combinations of
» ! # $ % &*+ . /< =>?2Q\ ™| - ~_:
— Excluding certain reserved sequences:
» . =\] <= > Q@ ~ =>
— Used in an “infix” manner:
» BE.g. 5 + 3
— Can be made “prefix” by enclosing in parentheses
» B.g. (+) 5 3
— Any identifier can be made infix by using backquotes.
» Eg. 10 in w or 3 choose 5

« Literals
— Integers, e.g. 123 39949993 Oxff7f 00722
— Floating point, e.g. 3.14 7.0 0.45 8.5e7

— Characters,e.g. ’"a’ "z’ ’'\n’ Strings,e.g. “abc” “def\n”

09/20/05 PSU CS457/557 Fall'05 Tolmach 10

Functions

« Functions are defined by equations in files

« Example file lectO1.hs:

plusone :: Int -> Int
plusone x = x + 1

« Example dialog in hugs:
Prelude> :1 lectOl.hs
Reading file “lectOl.hs”:
Hugs session for:
C:\hugs\lib\Prelude.hs
lectO1l.hs
Main> plusone 41
42

09/20/05 PSU CS457/557 Fall'05 Tolmach

Functions with Multiple Arguments

« Example Definitions
difference :: Int -> Int -> Int

difference x y = if x <= y then y-x else x-y

« Example Session:
Main> difference 3 6
3
Main> :type difference
difference :: Int -> Int -> Int
Main> difference
ERROR - Cannot find "show" function for:
*** Expression : difference
***x Of type : Int -> Int -> Int

« Arrow is right associative

a->b ->c = a-> (b ->c)

09/20/05 PSU CS457/557 Fall'05 Tolmach

Constructing Lists

The Empty List]

The "Cons" (:) Constructor

Prelude> 3 : [3,4,5]
[3, 3, 4, 5]

The Dot Dot notation

Prelude> [1 .. 4]
[1, 2, 3, 4]

The Comprehension notation

Prelude> [x + 1 | x <- [2..4]]

[3, 4, 5]

Prelude> [(x,y) | x <- [1..2], yv <- [3,5,7]]
[(x,3, (1,5, (1,7, (2,3), (2,5, (2,7)]
Prelude> [x * 2 | x <- [1..10], even x]

[4, 8, 12, 16, 20]

09/20/05 PSU CS457/557 Fall'05 Tolmach

Prelude> head
1

Prelude> tail
[2, 3]

Prelude> null
False

Prelude> take
[1,2]

Prelude> drop
[3]

09/20/05

Taking Lists Apart

[1,2,3]

2 [1,2,3]

2 [1,2,3]

PSU CS457/557 Fall'05 Tolmach

Exercise

» Define prefix and lastone in terms of head, tail and
reverse. First make a file “lect02.hs”

« Sample Hugs run
Prelude> :1 lect02.hs
Reading file “lect02.hs”:

Hugs session for:

C:\hugs\lib\Prelude.hs

lect02.hs

Main> lastone [1,2,3,4]
4

Main> prefix [1,2,3,4]
[1, 2, 3]

Main>

09/20/05 PSU CS457/557 Fall'05 Tolmach

Thinking about Functions

« Can picture function as a box with some inputs and an
output:

74>

difference —»3

4 -

[3,2,1]
reverse ~

lastone

09/20/05 PSU CS457/557 Fall'05 Tolmach

Thinking about Types

« A type is a collection of values. Functions can only be
applied to arguments of appropriate types.

Int — »

difference | > Int

Int —

| Int]
reverse >~

lastone

09/20/05 PSU CS457/557 Fall'05 Tolmach

Computation by Calculation

In a pure functional language, we can always perform
computation by replacing defined symbols by their
definitions:

(7-3)*2 ==
4%2 ==
8
Given
a =10
b =7

difference x y = 1if x <= y then y-x else x-y

Can calculate
difference a b ==
if a <= b then b-a else a-b ==
if 10 <= 7 then 7-10 else 10-7 ==
if False then 7-10 else 10-7 ==> 10-7 ==> 3

09/20/05 PSU CS457/557 Fall'05 Tolmach

18

