1. Given the usual definitions

\[
\begin{align*}
 \text{map } f \left[\right] & = \left[\right] & \text{(map1)} \\
 \text{map } f \left(x:x:s \right) & = f \ x : \text{map } f \ xs & \text{(map2)} \\
 \left(f \ . \ g \right) \ x & = f \left(g \ x \right) & \text{(comp)}
\end{align*}
\]

prove that for any finite list \(xs \) and appropriately typed functions \(f \) and \(g \),

\[
\text{map } \left(f \ . g \right) \ xs = \text{map } f \ . \text{map } g \ xs
\]

2. Given the definitions

\[
\begin{align*}
 \text{reverse } \left[\right] & = \left[\right] & \text{(rev1)} \\
 \text{reverse } \left(x:x:s \right) & = \text{reverse } xs \ ++ \ \left[x \right] & \text{(rev2)} \\
 \left[\right] \ ++ \ ys & = ys & \text{(++1)} \\
 \left(x:x:s \right) \ ++ \ ys & = x\ : \left(xs \ ++ \ ys \right) & \text{(++2)}
\end{align*}
\]

prove that for any finite list \(xs \),

\[
\text{reverse } \left(\text{reverse } xs \right) = xs
\]

Hint: You’ll need to prove (by a separate induction) an auxiliary lemma relating \text{reverse} and ++. You may take as given (without the need for further proof), the two properties of \(++ \) listed at the top of Hudak Table 11.2 (call them \(++\text{assoc} \) and \(++\text{nil} \) respectively).