
CS 457/557 Homework 4 – due 2pm, Tuesday, Oct. 25, 2005

Hand in your solutions on paperand email them tocs457acc@cs.pdx.edu. All the programs
should be placed in a single.hs file, which can be the body of your email message or an attach-
ment. It isnot necessary to show evidence that you have loaded and tested your programs, but this
is of course the only sensible way to make sure that you have found correct answers!

1. Write a function

subStrings :: String -> [String]

that returns a list containing all the substrings of its argument. For example, the substrings of
"abc" are"abc", "ab", "bc", "a", "b", "c", and"". Each distinct substring must appear
exactly once in the result list, but the order does not matter.

(But, for extra credit, write a version whose result lists the substrings in decreasing order by length,
e.g. for input"abc", output should be in the order listed above.)

2. Newton’s method says we can calculate
√

x by taking the limit of the following sequence of
approximations:a0 = 1.0, a1 = (a0 + x/a0)/2.0, . . . , a

n
= (a

n−1 + x/a
n−1)/2.0, . . .. Implement

a function

squareRoot :: Float -> Float

that returns the best possible approximation to the square root of its argument using Newton’s
method. (Note: You can stop taking approximations when the difference between successive terms
is less thanǫ, for a suitable small value ofǫ.)

3. Do Hudak Exercise 7.1. Hint: Give your function the type

foldTree :: (a -> a -> a) -> (b -> a) -> Tree b -> a

4. Do Hudak Exercise 7.4, usingInternalTree.

5. Do Hudak Exercise 7.5. You’ll want to extract and modify the existing code fromTrees.lhs
(rather than trying to import it). Hint: Define your revised version ofevaluate in terms of an
auxiliary function

evaluate’ :: [(String,Float)] -> Expr -> Float

where the first argument is a list of variable bindings to be used in evaluating the second argument.
For example,

evaluate’ [("x", 1.0),("y",2.0)] (V "x" :+ V "y")

should yield3.0. You may find the functionPrelude.lookup to be useful.

6. Do Hudak Exercises 8.5 and 8.6. You’ll want to extract and modify the existing code from
Region.lhs (rather than trying to import it). Assume that the list of vertices passed topolygon
is in counter-clockwise order.

7. Just as a set containing elements of typea can be represented by a function of type

1



a -> Bool

so a dictionary (finite map) with keys of typek and values of typev can be represented by a
function of type

k -> Maybe v

Suppose we want to define an abstract data type of such dictionaries. Complete the following
implementation by giving definitions offind andinsert . (Hint: Let the types be your guide!)

type Dict a b = a -> Maybe b
empty :: Dict a b
empty a = Nothing
find :: Dict a b -> a -> Maybe b
insert :: Eq a => Dict a b -> a -> b -> Dict a b

2


