1. Write a function
\[
\text{subStrings :: String} \rightarrow [\text{String}]
\]
that returns a list containing all the substrings of its argument. For example, the substrings of
"abc" are "abc", "ab", "bc", "a", "b", "c", and ". Each distinct substring must appear
exactly once in the result list, but the order does not matter.
(But, for extra credit, write a version whose result lists the substrings in decreasing order by length,
e.g. for input "abc", output should be in the order listed above.)
2. Newton’s method says we can calculate \(\sqrt{x} \) by taking the limit of the following sequence of approximations:
\[
a_0 = 1.0, a_1 = (a_0 + x/a_0)/2.0, \ldots, a_n = (a_{n-1} + x/a_{n-1})/2.0, \ldots
\]
Implement a function
\[
\text{squareRoot :: Float} \rightarrow \text{Float}
\]
that returns the best possible approximation to the square root of its argument using Newton’s
method. (Note: You can stop taking approximations when the difference between successive terms
is less than \(\epsilon \), for a suitable small value of \(\epsilon \).)
3. Do Hudak Exercise 7.1. Hint: Give your function the type
\[
\text{foldTree :: (a} \rightarrow \text{a} \rightarrow \text{a}) \rightarrow \text{(b} \rightarrow \text{a}) \rightarrow \text{Tree b} \rightarrow \text{a}
\]
4. Do Hudak Exercise 7.4, using InternalTree.
5. Do Hudak Exercise 7.5. You’ll want to extract and modify the existing code from Trees.lhs
(rather than trying to import it). Hint: Define your revised version of \text{evaluate} in terms of an
auxiliary function
\[
\text{evaluate'} :: [(\text{String, Float})] \rightarrow \text{Expr} \rightarrow \text{Float}
\]
where the first argument is a list of variable bindings to be used in evaluating the second argument.
For example,
\[
\text{evaluate'} [("x", 1.0), ("y", 2.0)] (\text{V } "x" \text{ :+ } \text{V } "y")
\]
should yield \(3.0 \). You may find the function \text{Prelude.lookup} to be useful.
6. Do Hudak Exercises 8.5 and 8.6. You’ll want to extract and modify the existing code from
Region.lhs (rather than trying to import it). Assume that the list of vertices passed to \text{polygon}
is in counter-clockwise order.
7. Just as a set containing elements of type \(a \) can be represented by a function of type
a -> Bool

so a dictionary (finite map) with keys of type k and values of type v can be represented by a function of type

k -> Maybe v

Suppose we want to define an abstract data type of such dictionaries. Complete the following implementation by giving definitions of find and insert. (Hint: Let the types be your guide!)

type Dict a b = a -> Maybe b
empty :: Dict a b
empty a = Nothing
find :: Dict a b -> a -> Maybe b
insert :: Eq a => Dict a b -> a -> b -> Dict a b