Modular Lazy Search for Constraint Satisfaction Problems

Andrew Tolmach
Thomas Nordin

Pacific Software Research Center
Portland State University and Oregon Graduate Institute
Portland, Oregon
Constraint Satisfaction Problems

- Ubiquitous, important, computationally hard
 - Graph coloring and matching
 - Scene labeling for vision
 - Temporal reasoning
 - Resource allocation for planning, scheduling
 - etc., etc.

- Try to simplify constraints first; then must use brute force

- Handle binary constraints over finite domains

- Assume nothing known about structure of constraint graph
 - n-Queens looks just like graph coloring
CSP Algorithm Zoo

- No agreed-upon common framework.
- Many problems benefit from tailor-made combinations of algorithms.
“Re-use” of Imperative Code

```
int FC_CBJ(z)
{
  int h, i, j, jump;
  if (z > N) {
    solution();
    return(N);
  }
  empty(conf_set[i]);
  for (i = 0; i < K;
       if (domains[z][i]
          continue;
          v[z] = i;
  fail = consistent;
  if (fail == 0) {
  jump = FC_CBJ(z
  if (jump != z)
    return(jump);
  restore(z);
  if (fail)
    for (j = 1; j < [fail])
      if (checking[j]
        add(j, conf[;
        [z],j]);
    for (j = 1; j < z;
      if (checking[j][z]
        add(j, conf_set[j,]
    h = max(conf_set[z]
    merge(conf_set[h],
    for (i = z; i >= h;
      restore(i);
    return(h);```
Lazy Functional Programming View

• Modularize search into separate generate & test functions...
  ...communicating via explicit, but lazy, intermediate data structure.

• Simple program structure

```
generate :: problem -> [candidate]
test :: candidate -> Bool
search = (filter test) . generate
```

![Program structure diagram]

- generate
- test
- filter
- problem
- [solution]
- [candidate]
Binary CSPs in Haskell

- Set of variables \( \{1, \ldots, m\} \)
  
  ```haskell
type Var = Int
  ```

- Set of possible values \( \{1, \ldots, n\} \), same for each variable
  
  ```haskell
type Value = Int
  ```

- Assignments associate variables to values
  
  ```haskell
data Assignment = Var := Value
  ```

- Set of pairwise constraints on assignments
  
  - Defined by a symmetric `oracle` function
    
    ```haskell
type Rel = Assignment -> Assignment -> Bool
  ```
  
  - If oracle returns true, assignments are consistent
  
  - Each call on this function is a `constraint check`

- Problem:
  
  ```haskell
type CSP = CSP{vars::Int, vals::Int, rel::Rel}
  ```
States and Solutions

• A state is a set of assignments
  
  type State = [Assignment]

• A state that assigns all variables is complete.
  
  complete :: CSP -> State -> Bool
  
  complete CSP{vars} as = (length as == vars)

• A state is consistent if every pair of assignments is.
  
  consistent :: CSP -> State -> Bool
  
  consistent CSP{rel} [] = True
  consistent CSP{rel} (a:as) =
    (all (rel a) as) && (consistent as)

• A solution is a complete, consistent state.
  
  solution :: CSP -> State -> Bool
  
  solution csp as = (complete csp as)
    && (consistent csp as)
n-Queens Problem

- Assume one queen per column.
- Variables model rows; values model columns.
  
  ```haskell
 queens :: Int -> CSP
 queens n = CSP{vars = n, vals = n, rel = safe}
 where safe (c1 := r1) (c2 := r2) =
 (r1 /= r2) && abs (c1-c2) /= abs(r1-r2)
  ```

- Obtaining **all** solutions
  
  ```haskell
 solver :: CSP -> [State]
 solver (queens 5)) ->
 [[e:=4,d:=1,c:=3,b:=5,a:=2],
 ...]
  ```

- Obtaining **one** solution
  
  ```haskell
 head (solver (queens 5))
  ```
Tree Search

data Tree a = T a [Tree a]

mkTree :: CSP -> Tree State
pruneTree :: (State -> Bool) -> Tree State -> Tree State
leaves :: Tree State -> [State]

solver :: CSP -> [State]
solver csp = (filter (complete csp) .
  leaves .
  pruneTree (not . (consistent csp)) .
  mkTree) csp
Tree Search Example

- Equivalent to ordinary imperative backtracking algorithm.
- Tree is isomorphic to activation history tree for recursive implementation.
Organizing the Zoo with Conflict Sets

- A conflict set (CS) for a state S is:
  - a non-empty subset of the variables in S, such that
  - if S’ is any solution state, then there is at least one variable x in CS such that S(x) ≠ S’(x).

  I.e., at least one of the variables in CS “must change its value” to reach a solution.

- A state can be extended to a solution iff it has no CS.

- If we know a CS for a state, we can safely prune its sub-tree.

- Many interesting algorithms can be phrased as conflict-set computations, allowing them to be classified and combined.
Conflict Set Labeling Example

• Earliest Conflict

• Union Rule
Generic Solver in Haskell

- Parameterized by conflict set labeling mechanism
  
  ```haskell
 type ConflictSet = [Var]
 type Labeler = CSP -> Tree State ->
 Tree (State,ConflictSet)
  ```

- Labeling just adds extra stage to solver’s “lazy pipeline”
  
  ```haskell
 search :: Labeler -> CSP -> [State]
 search labeler csp =
 (filter complete . map fst . leaves .
 prune (not.null.snd) . labeler csp . mkTree) csp
  ```

- Example: simple backtracking uses a trivial labeler
  
  ```haskell
 bt :: Labeler
 bt csp = mapTree f
 where f s = (s,inconsistency csp s)
 btsolver = search bt
  ```
**Conflict-directed Backjumping**

- Complicated algorithm, usually phrased as “jumping back” to a state further up the recursion stack; hard to show correct.
  
- We can give a purely **local**, **declarative** description.

- Use union rule plus one other fact:
  
  - If a node A has a known conflict set CS that does not contain the variable assigned at A, then CS is also a conflict set for A’s parent.

- View CBJ as way to **improve** an existing CS labeling

  ```
 cbj :: CSP -> Tree (State,ConflictSet) ->
 Tree (State,ConflictSet)

 cbjsolver = search cbjbt

 where cbjbt = cbj csp . bt csp
  ```
Backjumping Example

Diagram showing a backjumping example with nodes labeled a, b, c, d, e, f and sets like {a, b, c} and {b, e}.
Some Other Algorithms

• **Forward checking, backmarking** and related algorithms compute CSs for all future assignments at each node.

  \[\text{storeConflicts} :: \text{CSP} \to \text{Tree State} \to \text{Tree (State, Cache ConflictSet)}\]

  \[\text{bm csp} = \text{extractConflicts} \circ \text{storeConflicts} \circ \text{csp}\]

• **Value-ordering heuristics** change the order of branches to put more promising branches on the left.

  \[\text{hrandom} :: \text{Seed} \to \text{Tree a} \to \text{Tree a}\]

  \[\text{btr} :: \text{Seed} \to \text{Labeler}\]

  \[\text{btr seed csp} = \text{bt csp} \circ \text{hrandom seed}\]

• **Fail first dynamic variable ordering** requires just slightly richer framework.

• Trivial to **mix and match** by composing labelers.
Runtime Comparison

Graph coloring

Relative runtime

All 12-queens
First 16-queens
Anna
Miles250
Miles500
Miles1000

(79.1s) (0.03s) (0.47s) (0.37s) (0.71s) (2.15s)
Performance of Modular Lazy CSP

• Compared to imperative algorithms:
  – Same number of consistency checks
  – Roughly \textbf{same space} (polynomial in problem size) after plugging “space leaks”
  – Roughly \textbf{30X slower} than optimized C (on kernel)

• Compared to manually fused Haskell code
  – Roughly \textbf{4X slower} (on kernel)

• But \textbf{fast enough} to allow experimentation with different combinations of algorithms and heuristics.
  – Can then recode in imperative style if desired
  – Constant factors don’t matter much anyhow.
Fusion by Rewrite Rules

• Search pipeline generates **lots** and **lots** of tree nodes.
  \[
  \text{search } \approx \text{leaves . prune . label . mkTree}
  \]

• Can reimplement Tree ADT in terms of highly regular **producer** and **consumer** functions:
  \[
  \text{data Tree } a = T a \ [\text{Tree } a] \\
  \text{foldTree} :: (a \to [b] \to b) \to \text{Tree } a \to b \\
  \text{buildTree} :: (\forall b.(a\to[b]\to b)\to b) \to \text{Tree } a \\
  \text{buildTree } g = g \ T
  \]

• Simple rewrite **rule** describes fusion
  \[
  \forall k,g. \ \text{foldTree} \ k \ (\text{buildTree } g) = g \ k
  \]
  to avoid building intermediate nodes

• Glasgow Haskell Compiler (GHC) has prototype mechanism to specify and apply rules.

• Improves speed of kernel by >3X, almost to hand-fused Haskell, **without** changing search application
  code at all.
Space Leaks

• Space behavior of lazy programs is not compositional.
• Tiny changes in the way a tree producer is used can easily change program’s space from linear to exponential.
• Our (ignorant) development cycle:
  – Code (hoping for the best)
  – Profile (awkward in practice, but tools can be improved)
  – Ponder for awhile (or ask a guru – not too useful)
  – Fiddle with the code and try again
• Improving this story is a major research challenge.
  – More important than shaving constant factors with better optimizing compilers.
Conclusions & Future Work

• Using modular lazy framework can **clarify** algorithms and their key invariants.

• New **combinations** of algorithms for particular problems can be easily expressed -- often with just one line of code.

• Useful **experiments** can be conducted, despite the overheads due to laziness.

• Future work:
  – More sophisticated algorithms
  – Tools/ideas for **space behavior** and **selective laziness**
  – Selling to constraints community (without functional programming?)