CS 457/557: Functional Languages

Lecture 5: Algebraic Datatypes

Mark P Jones and Andrew Tolmach
Portland State University
Algebraic Datatypes

- Booleans and Lists are both examples of “algebraic datatypes”

- Any value of an algebraic datatype can be built using just the declared set of **constructors**.
 - Every Boolean value can be constructed using either False or True
 - Every list can be described using (a combination of) [] and (:)

- Every value of an algebraic type can be matched by some combination of constructors
In Haskell Notation

data Bool = False | True
introduces:
- A type, Bool
- A constructor function, False :: Bool
- A constructor function, True :: Bool

data List a = Nil | Cons a (List a)
introduces
- A type, List t, for each type t
- A constructor function, Nil :: List a
- A constructor function, Cons :: a -> List a -> List a

Prelude definition uses [] and (::)

Built-in special syntax [...]
More Enumerations

\textbf{data} \texttt{Rainbow} = \texttt{Red} \mid \texttt{Orange} \mid \texttt{Yellow} \\
\hspace{2cm} \mid \texttt{Green} \mid \texttt{Blue} \mid \texttt{Indigo} \mid \texttt{Violet}

introduces:

\begin{itemize}
\item A type, \texttt{Rainbow}
\item A constructor function, \texttt{Red :: Rainbow}
\item \ldots
\item A constructor function, \texttt{Violet :: Rainbow}
\end{itemize}

Every value of type \texttt{Rainbow} is one of the above seven colors
More Recursive Types

```
data Shape = Circle Radius
          | Polygon [Point]
          | Transform Transform Shape
```

```
data Transform
    = Translate Point
    | Rotate Angle
    | Compose Transform Transform
```

introduces:
- Two types, Shape and Transform
- Circle :: Radius -> Shape
- Polygon :: [Point] -> Shape
- Transform :: Transform -> Shape -> Shape
- ...

...
More Parameterized Types

data Maybe a = Nothing | Just a

introduces:
- A type, Maybe t, for each type t
- A constructor function, Nothing :: Maybe a
- A constructor function, Just :: a -> Maybe a

data Pair a b = Pair a b

introduces
- A type, Pair t s, for any types t and s
- A constructor function Pair :: a -> b -> Pair a b
General Form

Algebraic datatypes are introduced by top-level definitions of the form:

```
data T a_1 ... a_n = c_1 | ... | c_m
```

where:

- **T** is the type name (must start with a capital letter)
- **a_1, ..., a_n** are (distinct) (type) arguments/parameters/variables (must start with lower case letter) (n≥0)
- Each of the **c_i** is an expression **F_i t_1 ... t_k** where:
 - **t_1, ..., t_k** are type expressions that (optionally) mention the arguments **a_1, ..., a_n**
 - **F_i** is a new constructor function **F_i :: t_1 -> ... -> t_p -> T a_1 ... a_n**
 - The **arity** of **F_i**, k≥0

Quite a lot for a single definition!
Pattern Matching

In addition to introducing a new type and a collection of constructor functions, each data definition also adds the ability to **pattern match** over values of the new type.

For example, given

```haskell
data Maybe a = Nothing | Just a
```

then we can define functions like the following:

```haskell
orElse :: Maybe a -> a -> a

Just x `orElse` y = x
Nothing `orElse` y = y
```
Pattern Matching & Substitution

The result of a pattern match is either:

- A failure
- A success, accompanied by a substitution that provides a value for each of the values in the pattern

Examples:

- [] does not match the pattern (x:xs)
- [1,2,3] matches the pattern (x:xs) with \(x=1 \) and \(xs=[2,3] \)
Patterns

More formally, a pattern is either:

- **An identifier**
 - Matches any value, binds result to the identifier

- **An underscore (a “wildcard”)**
 - Matches any value, discards the result

- **A constructed pattern** of the form $\texttt{C p}_1 \ldots \texttt{p}_n$, where \texttt{C} is a constructor of arity n and $\texttt{p}_1, \ldots, \texttt{p}_n$ are patterns of the appropriate type
 - Matches any value of the form $\texttt{C e}_1 \ldots \texttt{e}_n$, provided that each of the \texttt{e}_i values matches the corresponding \texttt{p}_i pattern.
Other Pattern Forms

For completeness:

- “Sugared” constructor patterns:
 - Tuple patterns \((p_1, p_2)\)
 - List patterns \([p_1, p_2, p_3]\)
 - Strings, for example: "hi" = ('h': 'i': [])

- Numeric Literals:
 - Can be considered as constructor patterns, but the implementation uses equality (===) to test for matches

- “as” patterns, \(\text{id}@\text{pat}\); lazy patterns, \(\sim\text{pat}\); and labeled patterns, \(C\{l=x\}\)
Function Definitions

In general, a function definition is written as a list of adjacent equations of the form:
\[f \ p_1 \ldots \ p_n = \text{rhs} \]

where:
- \(f \) is the name of the function that is being defined
- \(p_1, \ldots, p_n \) are patterns, and \(\text{rhs} \) is an expression

All equations in the definition of \(f \) must have the same number of arguments (the "arity" of \(f \))
Given a function definition with m equations:

\[
\begin{align*}
 f(p_{1,1} \ldots p_{n,1}) &= \text{rhs}_1 \\
 f(p_{1,2} \ldots p_{n,2}) &= \text{rhs}_2 \\
 \ldots \\
 f(p_{1,m} \ldots p_{n,m}) &= \text{rhs}_m
\end{align*}
\]

The value of \(f(e_1 \ldots e_n) \) is \(S\text{rhs}_i \), where \(i \) is the smallest integer such that the expressions \(e_j \) match the patterns \(p_{j,i} \) and \(S \) is the corresponding substitution.
Guards, Guards!

- A function definition may also include guards (Boolean expressions):

\[
f \ p_1 \ldots \ p_n \quad | \quad g_1 = \text{rhs}_1 \\
| \quad g_2 = \text{rhs}_2 \\
| \quad g_3 = \text{rhs}_3
\]

- An expression \(f \ e_1 \ldots \ e_n \) will only match an equation like this if all of the \(e_i \) match the corresponding \(p_i \) and, in addition, at least one of the guards \(g_j \) is True.

- In that case, the value is \(S \ \text{rhs}_j \), where \(j \) is the smallest index such that \(g_j \) is True.

- (The prelude defines \texttt{otherwise = True :: Bool} for use in guards.)
Where Clauses

- A function definition may also have a where clause:

\[
\text{f } p_1 \ldots p_n = \text{rhs} \quad \text{where} \quad \text{decls}
\]

- This behaves like a let expression:

\[
\text{f } p_1 \ldots p_n = \text{let} \quad \text{decls} \quad \text{in} \quad \text{rhs}
\]

- Except that where clauses can scope across guards:

\[
\text{f } p_1 \ldots p_n \mid g_1 = \text{rhs}_1 \\
\mid g_2 = \text{rhs}_2 \\
\mid g_3 = \text{rhs}_3 \\
\quad \text{where} \quad \text{decls}
\]

- Variables bound here in decls can be used in any of the \(g_i \) or \(\text{rhs}_i \)
Example: filter

\[
\begin{align*}
\text{filter} & :: (a \rightarrow \text{Bool}) \rightarrow [a] \rightarrow [a] \\
\text{filter} \ p \ [] & = [] \\
\text{filter} \ p \ (x:xs) & = \begin{cases} x : \text{rest} & \text{if } p \ x \\ \text{rest} & \text{otherwise} \end{cases} \\
& \text{where rest} = \text{filter} \ p \ xs
\end{align*}
\]
Example: Binary Search Trees

```haskell
data Tree = Leaf | Fork Tree Int Tree

insert :: Int -> Tree -> Tree
insert n Leaf = Fork Leaf n Leaf
insert n (Fork l m r)
    | n <= m = Fork (insert n l) m r
    | otherwise = Fork l m (insert n r)

lookup :: Int -> Tree -> Bool
lookup n Leaf = False
lookup n (Fork l m r)
    | n < m = lookup n l
    | n > m = lookup n r
    | otherwise = True
```
Example: Folds on Trees

foldTree :: t -> (t -> Int -> t -> t) -> Tree -> t
foldTree leaf fork Leaf = leaf
foldTree leaf fork (Fork l n r)
 = fork (foldTree leaf fork l) n (foldTree leaf fork r)

sumTree :: Tree -> Int
sumTree = foldTree 0 (\l n r-> l + n + r)

heightTree :: Tree -> Int
heightTree = foldTree 0 (\l _ r -> max l r + 1)
Case Expressions

Case expressions can be used for pattern matching:

```plaintext
case e of
  p_1 -> e_1
  p_2 -> e_2
  ...
  p_n -> e_n
```

Equivalent to:

```plaintext
let f p_1 = e_1
    f p_2 = e_2
    ...
    f p_n = e_n
in f e
```
Guards and where clauses can also be used in case expressions:

```haskell
filter p xs = case xs of
  [] -> []
  (x:xs) | p x -> x:ys
  | otherwise -> ys
  where ys = filter p xs
```
If Expressions

- If expressions can be used to test Boolean values:
  ```
  if e then e₁ else e₂
  ```

- Equivalent to:
  ```
  case e of
    True  -> e₁
    False -> e₂
  ```
Summary

- Algebraic datatypes can support:
 - Enumeration types
 - Parameterized types
 - Recursive types
 - Products (composite/aggregate values); and
 - Sums (alternatives)

- Type constructors, Constructor functions, Pattern matching

- Why “algebraic”? More to come...