CS 457/557: Functional Languages

Lecture 3: Lists by many means...

Mark P Jones and Andrew Tolmach
Portland State University
Why Study Lists?

- Lists are a heavily used data structure in many functional programs
- Special syntax is provided to make programming with lists more convenient
- Lists are a special case / an example of:
 - An algebraic datatype (coming soon)
 - A parameterized datatype (coming soon)
 - A monad (coming, but a little later)
What is a List?

- An ordered collection (multiset) of values
 - \([1,2,3,4], [4,3,2,1], [1,1,2,2,3,3,4,4]\) are distinct lists of integers

- A list of type \([T]\) contains zero or more elements of type \(T\)
 - \([\text{True, False}] :: \text{[Bool]}\)
 - \([1,2,3] :: \text{[Integer]}\)
 - \(['a', 'b', 'c'] :: \text{[Char]}\)
 - \([[],[1],[1,2],[1,2,3]] :: \text{[[Integer]]}\)

- All elements have the same type:
 - \([\text{True, 2, 'c']}\) is not a valid list
Naming Convention

- We often use a simple naming convention:

- If a typical value in a list is called x, then a typical list of such values might be called xs (i.e., the plural of x)

- ... and a list of lists of values called x might be called xss

- A simple convention, minimal clutter, and a useful mnemonic too!
How do you make a list?

The **empty list**, `[]`, which has type `[a]` for any (element) type `a`

Enumerations: `[e₁, e₂, e₃, e₄]`

Arithmetic Sequences:
- `[elem₁ .. elem₃]`
- `[elem₁, elem₂ .. elem₃]`
- Only works for certain element types: integers, booleans, characters, ...
- (omit last element to specify an “infinite list”)
... continued

- Using list comprehensions:
 - [2*x+1 | x <- [1,3,7,11]]

- Using prelude/library functions:
 - ++
 - reverse
 - take, takeWhile, drop, dropWhile, map, ...
 - ...

- Using constructor functions:
 - [] and (:) ("nil" and "cons")
Prelude Functions

(++) :: [a] -> [a] -> [a]
reverse :: [a] -> [a]
take :: Int -> [a] -> [a]
drop :: Int -> [a] -> [a]
takeWhile :: (a -> Bool) -> [a] -> [a]
dropWhile :: (a -> Bool) -> [a] -> [a]
iterate :: (a -> a) -> a -> [a]
repeat :: a -> [a]
...

map

- map :: (a -> b) -> [a] -> [b]
- map f xs produces a new list by applying the function f to each element in the list xs
- map (1+) [1,2,3] = [2,3,4]
- map even [1,2,3] = [False, True, False]
- map id xs = xs, for any list xs
- We can also think of map as a function that turns functions of type (a -> b) into list transformers of type ([a] -> [b])
- incAll :: [Int] -> [Int]
- incAll = map (1+)
- incAll [1,2,3] = [2,3,4]
Aside: Applicative Syntax

“Function application groups to the left”
\[f \ x \ y \ z = ((f \ x) \ y) \ z \]

“Function type arrows group to the right”
\[a \to b \to c \to d = a \to (b \to (c \to d)) \]

If \(f :: a \to b \) and \(x :: a \), then \(f \ x :: b \)

If \(f :: a \to b \to c \), \(x :: a \), and \(y :: b \), then \((f \ x) :: (b \to c) \) and \((f \ x \ y) = (f \ x) \ y :: c \)
Aside: “Curried” Functions

- We can think of a function \(f :: a \to b \to c \) in two different ways:
 - \(f \) takes two arguments (one of type \(a \) and one of type \(b \)) and returns a result of type \(c \)
 - \(f \) takes one argument (of type \(a \)) and returns a function (of type \(b \to c \)) as its result

- A function that takes its arguments one at a time is described as a **curried** function

- (All Haskell library functions work this way ...)

- Named after Haskell Curry (although some think we should call it “Schönfinkeling” after Moses Schönfinkel who used the idea earlier ...)

10
Aside: Uncurried Functions

- We can force programmers to supply multiple arguments at the same time by using tuples:

 \[\text{add} \quad :: \quad \text{(Int, Int)} \rightarrow \text{Int}\]

 \[\text{add} \ (x,y) \quad = \quad x + y\]

- However, Haskell’s syntax encourages the use of curried functions:
 - Fewer parentheses needed in many cases
 - More flexibility from the use of partial applications (i.e., when some of the trailing arguments to a function are omitted)
 - May be more efficient (avoids making a tuple)

(tuples are also use to return “multiple results”)
filter

- `filter :: (a -> Bool) -> [a] -> [a]`
- `filter even [1..10] = [2,4,6,8,10]`
- `filter (<5) [1..100] = [1,2,3,4]`
- `filter (<5) [100,99..1] = [4,3,2,1]`

We can think of `filter` as mapping predicates/functions of type `a -> Bool`, to list transformers of type `[a] -> [a]`

- `keepEvens:: [Int] -> [Int]`
- `keepEvens= filter even`
- `keepEvens [1..10] = [2,4,6,8,10]`
Higher-Order Functions

A function that takes functions as arguments or returns a function as its result is called a higher-order function.

map and filter are higher-order functions:

map (map (1+)) [[1], [2,3,4], [5,6]]
= [map (1+) [1],
 map (1+) [2,3,4],
 map (1+) [5,6]]
= [[2], [3,4,5], [6,7]]
Aside: Composition

\((\cdot) \quad :: \quad (b \to c) \to (a \to b) \to (a \to c) \)

\((f \cdot g) \ x \quad = \quad f \ (g \ x) \)

- Good for describing “pipelines”

- Example:

 \[\text{toOdd} \quad = \quad (1+) \cdot (2*) \]
 \[\text{toOdd} \ x \quad = \quad 1 + 2*x \]

- The first definition is said to be “point-free” because it doesn’t mention the argument \(x \) by name
Example: Grouping

\[
\text{group} :: \text{Int} \to [a] \to [[a]]
\]

\[
group n = \text{takeWhile} \ (\text{not} \ . \ \text{null}) \ . \ \text{map} \ (\text{take} \ n) \ . \ \text{iterate} \ (\text{drop} \ n)
\]

\[
["abc", "def", "g"]
\]

\[
["abc", "def", "g", ",", ",", ",", \ldots]
\]

\[
. \ \text{map} \ (\text{take} \ n)
\]

\[
["abcdefg", "defg", "g", ",", ",", ",", \ldots]
\]

\[
. \ \text{iterate} \ (\text{drop} \ n)
\]

\[
"abcdefg"
\]
Example: Grouping

group 3

 = takeWhile (not . null)

 . map (take 3)

 . iterate (drop 3)
Example: Grouping

group 3 "abcdefg"

= (takeWhile (not . null)

 . map (take 3)

 . iterate (drop 3)) "abcdefg"
Example: Grouping

group 3 "abcdefg"

= takeWhile (not . null)

(map (take 3)

(iterate (drop 3) "abcdefg")
Example: Grouping

group 3 "abcdefg"

= takeWhile (not . null)

(map (take 3)

["abcdefg", "defg", "g", ",", ",", ...])
Example: Grouping

group 3 "abcdefg"

= takeWhile (not . null)

["abc", "def", "g", ",", ",", ...]
Example: Grouping

group 3 "abcdefg"

 = ["abc", "def", "g"]
Aside: Lambda Notation

- The syntax \(\text{vars} \rightarrow \text{expr} \) denotes a function that takes arguments \(\text{vars} \) and returns the corresponding value of \(\text{expr} \)

- Referred to as a **lambda expression** after the corresponding construct in \(\lambda \)-calculus

Examples:

- \((\text{x} \rightarrow \text{x} + 1) \ 3 = 4 \)
- \((\text{x} \ y \rightarrow (\text{x} + \text{y}) \ast (\text{x} - \text{y})) \ 4 \ 2 = 12 \)
- \(\text{map} (\text{x} \rightarrow 1 + 2\ast\text{x}) \ [1,2,3] = [3,5,7] \)
- \(\text{filter p . filter q} = \text{filter} (\text{x} \rightarrow \text{q x} \&\& \text{p x}) \)
List Comprehensions

General form:
- \[\text{[expression | qualifiers]} \]

where **qualifiers** are either:
- **Generators**: pat <- expr; or
- **Guards**: expr; or
- **Local definitions**: let defns

Works like a kind of generalized “for loop”
Examples

\[
[\ x \times x \mid x \leftarrow [1..6] \] \\
= [\ 1, 4, 9, 16, 25, 36 \]
\]

\[
[\ x \mid x \leftarrow [1..27], 28 \ `\text{mod}` \ x == 0 \] \\
= [\ 1, 2, 4, 7, 14 \]
\]

\[
[\ m \mid n \leftarrow [1..5], m \leftarrow [1..n] \] \\
= [\ 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5 \]
\]
Applications

Some familiar functions:

\[
\text{map } f \ xs = [f x \mid x \leftarrow xs]
\]

\[
\text{filter } p \ xs = [x \mid x \leftarrow xs, p x]
\]

Can you define \texttt{take}, \texttt{head}, or (++) using a comprehension?
Laws of Comprehensions

\[
\begin{align*}
[x \mid x \leftarrow xs] &= xs \\
[e \mid x \leftarrow xs] &= \text{map} (\lambda x \rightarrow e) \ xs \\
[e \mid \text{True}] &= [e] \\
[e \mid \text{False}] &= [] \\
[e \mid gs_1, gs_2] &= \text{concat} [[e \mid gs_2] \mid gs_1]
\end{align*}
\]
Example

\[
[(x,y) \mid x \leftarrow [1,2], y \leftarrow [1,2]]
\]

= \text{concat}

\[
[[(x,y) \mid y \leftarrow [1,2]] \mid x \leftarrow [1,2]]
\]

= \text{concat}

\[
[\text{map } (\lambda y \to (x,y)) [1,2] \mid x \leftarrow [1,2]]
\]

= \text{concat}

\[
(\text{map } (\lambda x \to \text{map } (\lambda y \to (x,y)) [1,2])) [1,2])
\]
Constructor Functions

What if you can’t find a function in the prelude that will do what you want to do?

Every list takes the form:
- `[]`, an empty list
- `(x:xs)`, a non-empty list whose first element is `x`, and whose tail is `xs`

Equivalently: the list type has two “constructor functions”:
- The constant `[] :: [a]`
- The operator `(:) :: a -> [a] -> [a]`

Using “pattern matching”, we can also take lists apart ...
Functions on Lists

null :: [a] -> Bool
null [] = True
null (x:xs) = False

head :: [a] -> a
head (x:xs) = x

tail :: [a] -> [a]
tail (x:xs) = xs
Recursive Functions in Prelude

last :: [a] -> a
last (x:[]) = x
last (x:y:xs) = last (y:xs)

init :: [a] -> [a]
init (_:[]) = []
init (x:y:xs) = x : init (y:xs)

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs
reverse :: [a] -> [a]
reverse [] = []
reverse (x:xs) = (reverse xs) ++ [x]

(++) :: [a] -> [a] -> [a]
[] ++ xs = xs
(y:ys) ++ xs = y:(ys ++ xs)
... continued

```
zip :: [a] -> [b] -> [(a,b)]
zip [] _ = []
zip _ [] = []
zip (x:xs) (y:ys) = (x,y) : (zip xs ys)
```

```
unzip :: [(a,b)] -> ([a],[b])
unzip [] = ([],[])  
unzip ((l,r):xs) = (l:ls,r:rs) where (ls,rs) = unzip xs
```
... and more

\[
\text{\textbf{inits}} :\ [a] \rightarrow [[[a]]]
\]
\[
\text{inits } [] = [[[]]]
\]
\[
\text{inits } (x:xs) = [[], \text{map} (x:) (\text{inits } xs)]
\]

\[
\text{\textbf{subsets}} :\ [a] \rightarrow [[[a]]]
\]
\[
\text{subsets } [] = [[[]]]
\]
\[
\text{subsets } (x:xs) = \text{subsets } xs \quad \quad ++ \text{map} (x:) (\text{subsets } xs)
\]
Using the List Library

- **Data.List** is one of several standard Haskell Libraries

- **To use Data.List functions:**
 - In the interpreter: :l Data.List
 - In a .hs or .lhs file: import Data.List

- **Many useful functions are defined in this library.**

- **Browse via**
Summary

- There are many ways to construct and manipulate list values in functional languages like Haskell
- Higher-order functions capture common patterns of computations
- List comprehensions are especially compact
- Pattern matching and recursion support arbitrary computations on lists