
CS322 Languages and Compiler Design II
Spring 2012

Lecture 7

1

USES OF BOOLEAN EXPRESSIONS

Used to drive conditional execution of program sections, e.g.

IF (a < 17) OR (b = 12) THEN ... ELSE ...;

WHILE NOT ((x+1) > 39) DO ... END;

(In some languages) may be assigned to boolean variables or passed as
parameters, e.g.:

VAR b : BOOLEAN := (a < 17) OR (b = 12);
...
IF b THEN ... ELSE ...
...
myproc(b); (* procedure call *)
...

PSU CS322 SPR’12 LECTURE 7 c© 1992–2012 ANDREW TOLMACH 2

BOOLEAN EXPRESSIONS

Two representations may be useful:

• Value Representation.

Encode true and false numerically, e.g., as 1 and 0, and treat boolean
expressions like arithmetic expressions.

Pro: Language may support boolean values.
Con: Often a bad match to hardware.

• Flow-of-control Representation.

Position in generated code represents boolean value.

Pro: Good when “short-circuit” evaluation is allowed (or required), e.g.,
in C expression e1 || e2, e2 should be evaluated only if e1 is false.

Reminder: Some languages mandate short-circuit evaluation; others
prohibit it; still others leave it up to the compiler writer.

Pro: Convenient for control statements.

• For fab, we’ll use flow-of-control approach, and convert to values when
necessary.

PSU CS322 SPR’12 LECTURE 7 c© 1992–2012 ANDREW TOLMACH 3

SAMPLE PRODUCTIONS FOR VALUE-BASED BOOLEANS

B := E1 ’<’ E2

B.place = newtemp()

B.code =

let true = newlabel()

after = newlabel()

in E1.code @

E2.code @

[gen(true,if<,E1.place,E2.place),

gen(B.place,:=,0,_),

gen(after,goto,_,_),

gen(true,:,_,_),

gen(B.place,:=,1,_),

gen(after,:,_,_)]

Generates:

IF E1 < E2 GOTO L1

T := 0

GOTO L2

L1: T := 1

L2: ...

PSU CS322 SPR’12 LECTURE 7 c© 1992–2012 ANDREW TOLMACH 4

MORE SAMPLE VALUE-BASED PRODUCTIONS

B := B1 OR B2 (non-short-circuiting form)
B.place = newtemp()

B.code = B1.code @ B2.code @

[gen(B.place,|,B1.place,B2.place)] (bit-wise OR)

S := IF B THEN S1 ELSE S2

S.code = let false = newlabel()

after = newlabel()

in B.code @

[gen(false,if=,B.place,0)] @

S1.code @ [gen(after,goto,_,_)] @

[gen(false,:,_,_)] @

S2.code @

[gen(after,:,_,_)]

Generates:

IF B = 0 GOTO L1

S1

GOTO L2

L1: S2

L2: ...

PSU CS322 SPR’12 LECTURE 7 c© 1992–2012 ANDREW TOLMACH 5

EXAMPLE VALUE-BASED CODE

IF (a > 7) OR (b = 5) THEN x = 7 ELSE y = 2;

t1 := addr a L3:

t2 := *t1 t8 := const 1

t3 := const 7 L4:

if t2 > t3 goto L1 t9 := t4 | t8

t4 := const 0 if t9 = 0 goto L5

goto L2 t10 := const 7

L1: t11 := addr x

t4 := const 1 *t11 := t1 0

L2: goto L6

t5 := addr b L5:

t6 := *t5 t12 := const 2

t7 := const 5 t13 := addr y

if t6 = t7 goto L3 *t13 := t12

t8 := const 0 L6:

goto L4

PSU CS322 SPR’12 LECTURE 7 c© 1992–2012 ANDREW TOLMACH 6

BASIC CONTROL-FLOW REPRESENTATION

Idea: Code generated for boolean and relational expressions has true
and false “exits”, i.e., code evaluates expression and then jumps to one
place if true and another place if false.

• Relational expressions perform test and jump to true or false exit
accordingly.

• Boolean variables and constants jump directly to appropriate true or
false exit.

• Boolean expressions simply adjust/combine true/false exits of their
sub-expressions.

• Conditional statements define true and false exits of boolean
sub-expression to point to appropriate code blocks, e.g., THEN and ELSE

branches.

• If boolean-typed expression must deliver a value, true and false exits
are defined to point to code that loads the value.

PSU CS322 SPR’12 LECTURE 7 c© 1992–2012 ANDREW TOLMACH 7

EXAMPLE (ASSUMING SHORT-CIRCUITING)

IF (a > 7) OR (b = 5) THEN x = 7 ELSE y = 2;

t1 := addr a L1:

t2 := *t1 t7 := const 7

t3 := const 7 t8 := addr x

if t2 > t3 goto L1 *t8 := t7

goto L4 goto L3

L4: L2:

t4 := addr b t9 := const 2

t5 := *t4 t10 := addr y

t6 := const 5 *t10 := t9

if t5 = t6 goto L1 L3:

goto L2

PSU CS322 SPR’12 LECTURE 7 c© 1992–2012 ANDREW TOLMACH 8

CONDITIONAL STATEMENTS (SOMEWHAT NAIVE APPROACH)

Use control flow representation for boolean-typed expressions; define la-
bels on per-statement basis.

S := IF B THEN S1 ELSE S2

B.true = newlabel();

B.false = newlabel();

S.code =

let after = newlabel()

in B.code @

[gen(B.true,:,_,_)] @ S1.code @ [gen(after,goto,_,_)] @

[gen(B.false,:,_,_)] @ S2.code @

[gen(after,:,_,_)]

Generates:

IF B GOTO L1

GOTO L2

L1: S1

GOTO L3

L2: S2

L3:

PSU CS322 SPR’12 LECTURE 7 c© 1992–2012 ANDREW TOLMACH 9

RELATIONAL EXPRESSIONS

Inherit true and false label attributes.

Synthesize code to perform appropriate test and jump to appropriate
label.

Code doesn’t build a value, so no place attribute.

B := E1 ’=’ E2

B.code = E1.code @

E2.code @

[gen(B.true,if=,E1.place,E2.place),

gen(B.false,goto,_,_)]

B := E1 ’<’ E2

B.code = E1.code @

E2.code @

[gen(B.true,if<,E1.place,E2.place),

gen(B.false,goto,_,_)]

...

PSU CS322 SPR’12 LECTURE 7 c© 1992–2012 ANDREW TOLMACH 10

SHORT-CIRCUITING BOOLEAN EXPRESSIONS

Inherit true and false label attributes.

Pass them down to subexpressions, after suitable manipulation;
synthesize code attribute.

Again, no place attribute.

...

PSU CS322 SPR’12 LECTURE 7 c© 1992–2012 ANDREW TOLMACH 11

B := B1 OR B2

B1.true = B.true

B1.false = newlabel()

B2.true = B.true

B2.false = B.false

B.code = B1.code @

[gen(B1.false,:,_,_)] @

B2.code

B := B1 AND B2

B1.true = newlabel()

B1.false = B.false

B2.true = B.true

B2.false = B.false

B.code = B1.code @

[gen(B1.true,:,_,_)] @

B2.code

B := NOT B1

B1.true = B.false

B1.false = B.true

B.code = B1.code

PSU CS322 SPR’12 LECTURE 7 c© 1992–2012 ANDREW TOLMACH 12

CONVERSION FROM VALUE FORM

Boolean-typed identifiers (variables, true and false constants) must be
“converted” to control-flow form when tested.

B := V
B.code = V.code @

[gen(B.false,if=,V.place,0),
gen(B.true,goto,_,_)]

(Assuming 0 = false, non-0 = true)

PSU CS322 SPR’12 LECTURE 7 c© 1992–2012 ANDREW TOLMACH 13

CONVERSION TO VALUE FORM

Similarly, must convert other way when a value is needed, generating
code to build a value into a place.

E := B

B.true = newlabel()

B.false = newlabel()

E.place = newtemp()

E.code =

let after = newlabel()

in B.code @

[gen(B.true,:,_,_),

gen(E.place,:=,1,_),

gen(after,goto,_,_),

gen(B.false,:,_,_),

gen(E.place,:=,0,_),

gen(after,:,_,_)]

PSU CS322 SPR’12 LECTURE 7 c© 1992–2012 ANDREW TOLMACH 14

CAPTURING RELATIONAL TEST OUTCOMES

Many processors implement conditional jumps in two parts:

• a comparison instruction sets internal condition codes

• a conditional branch instruction tests the condition codes to decide
whether or not to branch

Some processors allow the condition codes to be used to drive
instructions other than conditional branches, e.g., the X86 supports

• set instructions that place a 1 or 0 value directly in a register based on
the condition codes

• cmov instructions that conditionally move data (or not) based on the
condition codes

Either of these can be used to generate much more efficient code when
the value form of a relational expression is needed. (To express these,
we would need to expand our IR, of course.)

PSU CS322 SPR’12 LECTURE 7 c© 1992–2012 ANDREW TOLMACH 15

HANDLING LOOP EXITS

Same label-passing approach can be used to implement break or exit
statements that can cause jumps out of loops. We simply add a .break
inherited attribute to statements!

S := BREAK

S.code = gen(S.break,goto,_,_)

S := LOOP S END

S.break = newlabel();

S.code =

let top = newlabel()

in [gen(top,:,_,_)] @

S.code @

[gen(top,goto,_,_),

gen(S.break,:,_,_)]

Other loop statements (like WHILE) must define and pass a similar
approprirate label to their child statement.

All other (non-loop) statement translations must pass the .break

attribute through (unchanged) to their children!

PSU CS322 SPR’12 LECTURE 7 c© 1992–2012 ANDREW TOLMACH 16

IMPROVING JUMP GENERATION

• Code for each statement always ends by “falling through” to next statement.

• There is no information flow between code generation for statements.

S := S1 ’;’ S2

S.code = S1.code @ S2.code

This can lead to bad code, e.g.,

WHILE B1 DO (WHILE B2 DO S)

L1: IF B1 GOTO L2

GOTO L3

L2: IF B2 GOTO L4

GOTO L5 ‘‘jump to jump’’
L4: S

GOTO L2

L5: GOTO L1

L3:

We can eliminate problems like this during optimization, but it’s easy to avoid
some of them in the first place.

PSU CS322 SPR’12 LECTURE 7 c© 1992–2012 ANDREW TOLMACH 17

IDEA: DEFER DEFINITION OF TARGET LABELS

• Give each statement an inherited attribute .next, which says where to
transfer control after statement.

• Code generated for each statement guarantees either to transfer control
to .next label or to “fall through.”

S := S1 ’;’ S2

S1.next = newlabel()

S2.next = S.next

S.code = S1.code @

[gen(S1.next,:,_,_)] @

S2.code

S := WHILE B DO S1

B.true = newlabel()

B.false = S.next

S1.next = newlabel()

S.code = [gen(S1.next,:,_,_)] @

B.code @

[gen(B.true,:,_,_)] @

S1.code @

[gen(S1.next,goto,_,_)]

PSU CS322 SPR’12 LECTURE 7 c© 1992–2012 ANDREW TOLMACH 18

DEFERRED LABEL DEFINITION (CONTINUED)

Now get better code, e.g.

WHILE B1 DO (WHILE B2 DO S)

now generates

L1: IF B1 GOTO L2
GOTO L?

L2: If B2 GOTO L3
GOTO L1

L3: S
GOTO L2

...
L?:

PSU CS322 SPR’12 LECTURE 7 c© 1992–2012 ANDREW TOLMACH 19

BACKPATCHING

Target label attributes (true,false,break, etc.) are inherited, so won’t
work with one-pass bottom-up code generation, e.g. when generating
code while doing bottom-up parsing.

Solution: Instead, keep lists of locations of gotos that need to be filled in
(“backpatched”) when final target is known. These backpatch lists are
synthesized attributes.

PSU CS322 SPR’12 LECTURE 7 c© 1992–2012 ANDREW TOLMACH 20

Example (to fill in): (a > 7) OR (b = 5)

1. t1 := addr a
2. t2 := *t1
3. t3 := const 7
4. if t2 > t3 goto _____
5. goto _____

6. t4 := addr b
7. t5 := *t4
8. t6 := const 5
9. if t5 = t6 goto _____

10. goto _____

At reduction for B := B1 OR B2

• Backpatch B1.false list with address of first instruction in B2.

• Merge B1.true and B2.true to form B.true.

• Make B2.false into B.false.

PSU CS322 SPR’12 LECTURE 7 c© 1992–2012 ANDREW TOLMACH 21

BACKPATCHING (CONTINUED)

At reduction for conditional statement, backpatch true and false lists for
expression.

E.g.: On reducing if B then S1 else S2, backpatch B.true to location
of S1 and B.false to location of S2.

PSU CS322 SPR’12 LECTURE 7 c© 1992–2012 ANDREW TOLMACH 22

Example (to fill in):

IF (a > 7) OR (b = 5) THEN x := 7 ELSE y := 2;

1. t1 := addr a

2. t2 := *t1

3. t3 := const 7

4. if t2 > t3 goto _____

5. goto __6__

6. t4 := addr b

7. t5 := *t4

8. t6 := const 5

9. if t5 = t6 goto _____

10. goto _____

11. t7 := const 7

12. t8 := addr x

13. *t8 := t7

14. goto _18__

15. t9 := const 2

16. t10 := addr y

17. *t10 := t9

18. ...

PSU CS322 SPR’12 LECTURE 7 c© 1992–2012 ANDREW TOLMACH 23

CASE STATEMENTS

case e of
v1 : s1

| v2 : s2

| ...
| vn : sn

else s
end

Good code generation for case statement depends on analysis of the
values on the case labels vi .

Options include:

• List of conditional tests and jumps (linear search).

• Binary decision code (binary tree).

• Other search code (e.g., hash table).

• Jump table (constant time).

• Hybrid schemes.

PSU CS322 SPR’12 LECTURE 7 c© 1992–2012 ANDREW TOLMACH 24

CASE STATEMENTS (CONTINUED)

Best option depends on range of values (min and max) and their “density,”
i.e., what percentage of the values in the range are used as labels.

Jump tables work well for dense value sets (even if large), but waste lots
of space for sparse sets. Linear search works well for small value sets.

PSU CS322 SPR’12 LECTURE 7 c© 1992–2012 ANDREW TOLMACH 25

