
CS322 Languages and Compiler Design II
Spring 2012

Lecture 5

1



EXPRESSIONS

• Essential component of “high-level” languages.

• Most familiar for arithmetic operators.

• Abstract away from precise order of evaluation, naming of intermediate
results.

x1 = (-b + sqrt(b*b - 4*a*c)) / (2 * a)

t1 = -b
t2 = b*b
t3 = 4*a
t4 = t3*c
t5 = t2 - t4
t6 = sqrt(t5)
t7 = t1 + t6
t8 = 2 * a
t9 = t7/t8

• Issue: Precedence rules (handled in parsing).

• Issue: Mixed-mode expressions and implicit coercions.

PSU CS322 SPR’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 2



BOOLEAN EXPRESSIONS

Many languages extend “high-level” expression facility to non-arithmetic
values, such as booleans.

• Operands: true, false, boolean-valued variables.

• Operators: and, or, not.

Booleans are typically a separate type (C/C++ is an exception).

Key issue: Does language use short-circuit evaluation for boolean
expressions?

• a AND b : evaluate b only if a evaluates to true.

• a OR b : evaluate b only if a evaluates to false.

if (x < 7 || costly(y) > 6) ...
if (p != NULL && p->x > 7) ...

Common misuse of booleans:

BOOLEAN flag;
flag := IF (x < 2) THEN true ELSE false;

PSU CS322 SPR’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 3



RICHER EXPRESSION DOMAINS

Some languages support expressions over larger values, e.g., vector,
strings, etc.

int a[10], b[10], c[10];
c := a * 5 + b;

C: for (i = 0; i < 10; i++)
c[i] = a[i] * 5 + b[i];

string a, b, c;
a := b & substring(c,2,4);

C: char *a,*b,*c;
int n = max(strlen(c)-2,4);
a = malloc(strlen(b) + n + 1);
strcpy(a,b);
strncpy(a+strlen(b),c+2,n);
a[strlen(b)+n] = ’\0’;

PSU CS322 SPR’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 4



FUNCTIONS AND OPERATORS

Most languages allow function calls (with appropriate return type) to
appear within expressions. So we can build expressions over an arbitrary
type, just by defining an appropriate set of functions.

However, function call syntax is typically inflexible. Many languages let us
use new infix operators as a special way of denoting functions.

• Operator syntax, precedence, etc. may be fixed for language or
programmer-definable.

• Issues like sharing, storage management are tricky.

• Not all operators act like functions.

PSU CS322 SPR’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 5



STATEMENT-LEVEL CONTROL STRUCTURES

• Sequencing

• Selection

• Iteration

(• Concurrency)

Primary mechanisms developed in FORTRAN and ALGOL60; mostly
minor changes since then (40+ years).

We distinguish control “structures” from “structureless” code using goto’s
and indirect jumps (“spaghetti code”).

Concurrent computation may be more “natural” (for neurons and
hardware) but appears hard to reason about accurately!

PSU CS322 SPR’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 6



MACHINE-LEVEL CONTROL FLOW

• Sequencing; unless otherwise directed, do the next instruction.

• Labels, i.e., addresses in target code.

• Unconditional GOTOs.

• Arithmetic and logical IF ? THEN GOTO constructs.

These more than suffice to compute anything that can be computed (as
best we know).

PSU CS322 SPR’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 7



STRUCTURED PROGRAMMING

(e.g., Edsger Dijkstra, “Go to statement considered harmful,” CACM,
11(3), March 1968, 147-148.)

Branches (conditional and unconditional) suffice to program anything;
they are what machines use.

BUT problems are best solved in terms of higher-level constructs, such
as loops and conditional blocks.

• Program text should make programmer’s intent explicit.

• Static structure of program text should resemble dynamic structure of
program execution.

Undisciplined use of GOTO’s makes these goals hard to achieve.

(Not just “GOTOs are bad.”)

PSU CS322 SPR’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 8



STRUCTURED PROGRAMMING—BASIC ELEMENTS

“Single-entry, single-exit.”

Loops:

while <condition> loop
<statements>

end loop

Can also put test at end. Sometimes want it in the middle...

loop
<statements>
exit if <condition>;
<statements>

end loop

Using exit violates single-exit goal. If loops are nested, want ability to
exit any number of levels.

PSU CS322 SPR’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 9



FOR LOOPS

for i in <lower-bound>..<upper-bound> loop
<statements>

end loop

Common questions:

• When are bounds calculated? Are they recalculated?

• Can <statements> change value of i

• Does i have a defined value after the end loop?

• Can one jump into or out of loop?

• What if upper-bound is less than lower-bound to start with?

C example:

for (i = *p; i > 0; i--)

can be optimized better than

for (i=1; i <= *p; i++)

PSU CS322 SPR’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 10



ITERATION IS RECURSION

We can give recursive definitions to the meaning of iterative statements.

Example:

while <condition> do <statements>

is equivalent to

if <condition> then
begin
<statements>;
while <condition> do <statements>
end

Any iteration can be converted to a recursion.

The converse is not true in general. But any tail-recursion (such as the
one above) can be converted into an iteration. Any decent compiler
should take advantage of this (though many don’t).

PSU CS322 SPR’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 11



CONDITIONALS AND CASES

if <condition> then
<statements>

elsif < condition> then
<statements>

elsif ...
else

<statements>
endif

(Various parts can be missing.)

case <expression> of
<value1>: <statements>
<value2>: <statements>
...
otherwise: <statements>
end case

Permits more efficient code (a jump table) if values are “dense.”

That’s All, Folks! This set of statements suffices for nearly all programs.

PSU CS322 SPR’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 12



TAMING goto

Completely unrestricted jumps are seldom allowed.

It makes little sense to allow jumps into the middle of a block, since none
of the block-local storage will have been properly initialized.

Many languages permit jumps out to enclosing blocks; in a stack
allocation scheme, such jumps require quietly popping one or more
frames.

Most languages provide special forms of escapes from structured
program components, such as loop exit.

These discourage uses of goto, but some good uses remain.

PSU CS322 SPR’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 13



USES FOR goto

Problem: Given a key value k, search an array a for a matching entry and
increment the corresponding element of an array b. If not found, add the
new key to the end of a.

A solution with goto (in C):

int i;
for (i = 0; i < n; i++)
if (a[i] == k)
goto found;

n++;
a[i] = k;
b[i] = 0;

found:
b[i]++;

PSU CS322 SPR’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 14



A SOLUTION WITH BOOLEANS (IN JAVA):

boolean found = false;
int i = 0;
while (i < n && !found) {
if (a[i] == k)
found = true;

else
i++;

}
if (!found) {
n = i;
a[i] = k;
b[i] = 0;

}
b[i]++;

This is clumsier and slower.

PSU CS322 SPR’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 15



A SOLUTION WITH ONE-LEVEL EXIT (IN JAVA):

boolean found = false;
int i;
for (i = 0; i < n; i++) {
if (a[i] == k) {
found = true;
break;

}
}
if (!found) {
i = n;
n++;
a[i] = k;
b[i] = 0;

}
b[i]++;

This is better, but still requires testing found below the loop.

PSU CS322 SPR’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 16



A SOLUTION WITH MULTI-LEVEL EXIT (IN JAVA):

In Java (unlike C/C++), we can break from any named enclosing block.

int i;
search:
{ for (i = 0; i < n; i++)

if (a[i] == k)
break search;

n++;
a[i] = k;
b[i] = 0;

}
b[i]++;

This does the trick. How is it better than the original goto version?

PSU CS322 SPR’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 17



THE COME FROM STATEMENT

10 J = 1
11 COME FROM 20
12 PRINT J

STOP
13 COME FROM 10
20 J = J + 2

(R. Lawrence Clark, “A linguistic contribution to GOTO-less
programming,” Datamation, 19(12), 1973, 62-63.)

But is this really a joke?

Even with a GO TO, we must examine both the branch and the target label
to understand the programmer’s intent.

PSU CS322 SPR’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 18



FUN WITH C

Problem: Sending characters to an output device as quickly as possible.

Given:

char p[] = "hello world...";
char *m = p;
int n = ... /* length of p */
#define output(c) ... /* do output */

Solution 1:

for (i = 0; i < n; i++)
output(*m++);

Or (a little simpler if we are allowed to destroy n):

while(n--)
output(*m++);

PSU CS322 SPR’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 19



Faster to unroll loop, say 4 times:

while (n & 3) {
output(*m++);
--n;

};
n /= 4;
if (n) do { output (*m++);

output (*m++);
output (*m++);
output (*m++);

} while (--n);

Or (the Duff Loop):

i = (n+3)/4;
if (n) switch (n & 3) {
case 0: do {output(*m++);
case 3: output(*m++);
case 2: output(*m++);
case 1: output(*m++)}

while (--i);
}

PSU CS322 SPR’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 20



EXCEPTIONS

Programs often need to handle exceptional conditions, i.e., deviations
from “normal” control flow.

Exceptions may arise from

• failure of built-in or library operations (e.g., division by zero, end of file)

• user-defined events (e.g., key not found in dictionary)

Awkward or impossible to deal with these conditions explicitly without
distorting normal code.

Most recent languages (Ada, C++, Java, etc.) provide a means to define,
raise, and handle exceptions.

PSU CS322 SPR’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 21



EXAMPLE: EXCEPTIONS IN JAVA

class Help extends Exception {};
try {
... if (gone wrong) throw new Help();
... x = a / b; ...
} catch (Help e) {

...report problem...
} catch (ArithmeticException e) {

x = -99;
}

PSU CS322 SPR’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 22



WHAT TO DO IN AN EXCEPTION?

If there is a statically enclosing handler, the thrown exception behaves
much like a goto. In previous example:

...
if (gone wrong) goto help_label;
..
help_label: ...report problem...

But what if there is no handler explicitly wrapped around the
exception-throwing point?

• In most languages, uncaught exceptions propagate to next
dynamically enclosing handler. E.g, caller can handle uncaught
exceptions raised in callee.

• Many languages permit a value to be returned along with the exception
itself.

• A few languages support resumption of the program at the point where
the exception was raised.

PSU CS322 SPR’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 23



EXCEPTION HANDLING EXAMPLE

class BadThing extends Exception {};

int foo () {
... throw new BadThing(); ...

}

bar () {
int x;
try {

x = foo ();
} catch (BadThing e) {

x = 0;
}

}

Implementation of dynamic exception handling requires integration with
function call/return mechanism.

PSU CS322 SPR’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 24


