
CS 322 Homework 2 – due 1:30 p.m., Thursday, May 3, 2012

The goal of this assignment is to re-acquaint you with assembly language programming in general and with the x86-
64 architecture in particular. It is not directly connectedwith your fab compiler project, but should prove useful
background for your code generator.

Write an X86-64 assembly language subroutineqs, suitable for calling from C, that sorts an array of double precision
floating point numbers into ascending order using quicksort. The calling interface is given by

void qs(int n, double *a)

wherea is the array to be sorted, andn is its size. The array should be sorted in place. Of course, you may choose to
implementqs using additional, private subroutines if you wish.

For example, if your routine is linked with the following main program (compiled for X86-64):

#include <stdio.h>

double a[] = {1.1,5.5,3.3,2.2,4.4};

main () {
int i;
qs(5,a);
for (i = 0; i < 5; i ++)

printf ("%f ", a[i]);
printf("\n");

}

it should produce the following output:

1.1 2.2 3.3 4.4 5.5

Of course, your code should also work when linked against more interesting main programs (like the private one we’ll
use as a test driver)!

In addition to the assembly code itself, youmust turn in pseudo-code or C code corresponding to your assemblycode,
and you must commentevery line of the assembly code indicating what it does in terms of the pseudo-code. For
example, if the pseudo-code contained the line

if (i < j) *i = *j;

the assembly code might contain the following commented lines:

cmpq %rax, %rbx # compare i vs. j
jbe .L77 # branch if j <= i
movsd (%rbx),%xmm2 # fetch *j
movsd %xmm2,(%rax) # store into *i

.L77:

It is also useful to include a comment explaining where each pseudo-code variable is held (i.e., which register or stack
frame slot).

Your code must be in a separate fileqs.s; don’t usegcc’s special mechanisms for including in-line assembly code.
Your explanatory C code or psuedo-code should be included asa block comment in this file.

Strive for correctness, clarity, concision, and efficiency, in that order. For full credit, you must addressall these criteria!
Extra credit will be given for especially fast code, but don’t try for this until you are certain that the first three criteria
are met.

1



Quicksort

There are many published descriptions of quicksort; I suggest the one given in Cormen, et al.,Introduction to Al-
gorithms, MIT Press (any edition), or in Sedgewick,Algorithms, Addison-Wesley (any edition).Don’t bother to
compute the partition element location in some fancy way like “median of three;” just use the first or last element of
the (sub)array. (When we test your code for speed, we’ll use arandomly generated array, so the average caseO(n lnn)
behavior should apply.)

Hints

For this homework, you will need to use the CS department linuxlab machines or an equivalent platform (64-bit X86
hardware; recent linux OS; GNU tool chain). You can choose todevelop your code on MacOS, but if so, you will still
need to port your.s file to the linuxlab machines and make sure that it assembles and runs correctly there; doing so
will probably require a small amount of surgery on your assembler input file.

See the course web page for pointers to various resources on X86-64 assembly language programming.

Use the-m64 option togcc or cc to get X86-64 output for your driver program. (This might notbe essential, but it
can’t hurt.)

Giving the-S option tocc or gcc together with a.c file produces a file with.s extension containing the assembly
code generated by the compiler for that.c file. Again, use the-m64 option to get X86-64 output. This can be very
useful for seeing what instructions the compiler chooses, exactly what the function calling conventions are, etc. You
will probably want to writeqs in C first (a pointer-based version will generally compile tobetter code), and use the
generated code as the basis for your own routine. This approach won’t help you with the explanatory comments,
though! And you will probably need to improve this code further by hand to avoid being penalized for obvious
stupidities in the compiler-generated assembler. Incidentally, also specifying-O2 to gcc is usually a good idea,
because the resulting code will be both more efficient and clearer.

Organization and Submission

Place your solution in a single file calledqs.s and mail it tocs322-01@cs.pdx.edu. Your C code or pseudo-
code should be included in a block comment at the top of this file. You must mail this file as a plain textattachment;
the contents of the message itself don’t matter. You mail subject line should contain the word “HW2”. We should then
be able to assemble your program on a linuxlab machine by creating a fresh directory, saving your attachment, and
typing

gcc -c -o qs.o qs.s

or

as -o qs.o qs.s

Assuming thatmain.c contains a test driver (such as the one described above) we should be able to produce a linked
executableqs containing both the driver and your code by copyingmain.c into the directory and then typing

gcc -m64 main.c qs.o -o qs

Note that we will be using automated mechanisms to read, compile, and test your programs, so adherence to this
naming and mailing policy is important! You may lose points if you fail to submit your program in the correct way.

2


