CS 322 Homework 2 — due 1:30 p.m., Thursday, May 3, 2012

The goal of this assignment is to re-acquaint you with as$getabguage programming in general and with the x86-
64 architecture in particular. It is not directly connecteith your fab compiler project, but should prove useful
background for your code generator.

Write an X86-64 assembly language subroutjse suitable for calling from C, that sorts an array of doublegision
floating point numbers into ascending order using quickgdre calling interface is given by

void gs(int n, double *xa)

wherea is the array to be sorted, ands its size. The array should be sorted in place. Of coursenyay choose to
implementgs using additional, private subroutines if you wish.

For example, if your routine is linked with the following nmgdrogram (compiled for X86-64):
#i ncl ude <stdio. h>
double a[] = {1.1,5.5,3.3,2.2,4.4};

main () {
int i;
qs(5, a);
for (i =0; i <5; i ++4)
printf ("% ", a[i]);
printf("\n");
}

it should produce the following output:
1.1 2.23.34.45.5

Of course, your code should also work when linked againserrgeresting main programs (like the private one we'll
use as a test driver)!

In addition to the assembly code itself, youst turn in pseudo-code or C code corresponding to your assecnlly,
and you must commergvery line of the assembly code indicating what it does in termshefpseudo-code. For
example, if the pseudo-code contained the line

f(<) o= s

the assembly code might contain the following commentesklin

cnpg % ax, 9% bx # conmpare i vs. j

jbe . L77 # branch if j <=

nmovsd (% bx), Y%&xm? # fetch xj

novsd %R, (% ax) # store into i
LL77:

Itis also useful to include a comment explaining where eagudo-code variable is held (i.e., which register or stack
frame slot).

Your code must be in a separate fijg. s; don’t usegcc’s special mechanisms for including in-line assembly code.
Your explanatory C code or psuedo-code should be includadémsck comment in this file.

Strive for correctness, clarity, concision, and efficiemeyhat order. For full credit, you must addregkthese criteria!
Extra credit will be given for especially fast code, but ddry for this until you are certain that the first three criger
are met.

Quicksort

There are many published descriptions of quicksort; | sagtiee one given in Cormen, et alntroduction to Al-
gorithms, MIT Press (any edition), or in Sedgewicklgorithms, Addison-Wesley (any edition)Don’t bother to
compute the partition element location in some fancy wag fikedian of three;” just use the first or last element of
the (sub)array. (When we test your code for speed, we’ll uae@omly generated array, so the average €dsdn n)
behavior should apply.)

Hints

For this homework, you will need to use the CS departmenklatumachines or an equivalent platform (64-bit X86
hardware; recent linux OS; GNU tool chain). You can choosteteelop your code on MacOS, but if so, you will still
need to port your s file to the linuxlab machines and make sure that it assembigsumns correctly there; doing so
will probably require a small amount of surgery on your adsieminput file.

See the course web page for pointers to various resource8®®Xassembly language programming.

Use the- n64 option togcc or cc to get X86-64 output for your driver program. (This might betessential, but it
can't hurt.)

Giving the- S option tocc or gcc together with a ¢ file produces a file with s extension containing the assembly
code generated by the compiler for that file. Again, use the m64 option to get X86-64 output. This can be very
useful for seeing what instructions the compiler chooseactty what the function calling conventions are, etc. You
will probably want to writeqs in C first (a pointer-based version will generally compilebitter code), and use the
generated code as the basis for your own routine. This appnean't help you with the explanatory comments,
though! And you will probably need to improve this code fertlby hand to avoid being penalized for obvious
stupidities in the compiler-generated assembler. Indalisn also specifying O2 to gcc is usually a good idea,
because the resulting code will be both more efficient ararefe

Organization and Submission
Place your solution in a single file calleg. s and mail it tocs322- 01@s. pdx. edu. Your C code or pseudo-
code should be included in a block comment at the top of thés fibu must mail this file as a plain teattachment;

the contents of the message itself don’t matter. You maiesitine should contain the word¥\2”. We should then
be able to assemble your program on a linuxlab machine byicgea fresh directory, saving your attachment, and

typing

gcc -c -0 (gs.0 (Qs. s
or

as -0 gs.o gs.s

Assuming thatrai n. ¢ contains a test driver (such as the one described above)auddbe able to produce a linked
executables containing both the driver and your code by copyirej n. ¢ into the directory and then typing

gcc -nmb4 main.c gs.o -0 Qs

Note that we will be using automated mechanisms to read, dejrgnd test your programs, so adherence to this
naming and mailing policy is important! You may lose poiritgdu fail to submit your program in the correct way.

