CS 322 Homework 1 — due 1:30p.m., Tuesday, Apr. 24, 2012

(Copyright, Andrew Tolmach 2003-2012. All rights reseryed

Interpreting fab Programs

Working individually or in teams of two, write an interprefer (a subset of) théab language, as
described in théab Language Reference Manual (available from the course web page).

To ease the implementation task, make the following simiplgf assumptions and clarifications:

e By default,exclude anything to do with real numbers; if a program involving gesl given
to the intepreter, the interpreter is permitted to fail ibittary ways. Implementing reals
properly is left for extra credit (see below).

e The Manual fails to indicate the range of tlad i nt eger type; itis intended to be a 32-bit
signed value, i.e., in the range [-2147483648,2147483647]

¢ In implementing the arithmetic operations on integersuasthat they behave the same
way as the corresponding Java operators. (This isn't anentrivial assumption; see the
Java documentation for the division and remainder operstio learn why.)

e In implementing the ead statement, assume that the integer literals being readwvilh
the format expected by the Javat eger . par sel nt method. If the input being read is
not of the correct form, the interpreter should halt exexutvith an error.

The interpreter should take a single command line argunpatifying the. f ab file to be inter-
preted. It should use the existing front-end code (see hHalmwerform lexical analysis, parsing,
and checking. The interpreter itself can assume that the Beig interpreted has successfully
passed the checker. The interpreter should execute th@uggam, reading any user input from
standard input and writing any user output to standard autpu

If the user program terminates normally, the interpreteusthprint the message ht er pr et er
done” to standard error. In addition, the interpreter shouldnie&ate with an appropriate er-
ror message to standard error if any of the following coodsi occur: division by zero, fail-
ure to return a value from a function procedure, invalid useut (including end of file) to a

r ead statement, array subscript out of bounds, dereferencinglarecord pointer. The inter-
preter may also terminate with an uncaught exceptiama. | ang. Qut Of Menor yEr r or or

j ava. |l ang. St ackOver f| owEr r or . (Note that the maximum memory and stack sizes can
be controlled using flags to theava command, but you should normally leave these alone.) Oth-
erwise, the interpreter should never fail on any typecheégtegram.

A working interpreter is available in the jar filent er p. j ar ; it can be run on fild oo. f ab by
typing

java -classpath frontend.jar:interp.jar InterpDriver foo.fab

Implementation

The filef r ont end. j ar contains a completiab front-end, which parses and type-checksab
files and produces an AST data structure. P& . j ava documents the AST. The front-end can
be executed (up through type-checking) on affi. f ab by typing

java -classpath frontend.jar CheckDriver foo.fab

It is recommended that you use this front-end implementadi® the basis for your interpreter,
since that is how we will test your submission. If you wish w&ewour own front-end modules
from CS321, see the section below for important notes.

In any case, your intepreter implementationst be defined by a cladsnt er p that compiles
and links with theAst andl nt er pDri ver classes provided here; you must not change these
classes. Thus, youmt er p class must implement the method

static void interp(Ast.Programp) throws Interp.InterpError

which returns normally if the program executes successhutld otherwise throws an appropri-
ate exception, wherent er pEr r or is a subclass ofst . Except i on that you define in the

| nt er p class. Also, you will want to use thé si t or classes andccept methods inAst

to traverse declarations, statements, expressions, eto.iMerpreter class should be placed in a
separate filé nt er p. j ava, which can be compiled using

javac -classpath .:frontend.jar Interp.java

There is a skeletal implementation in filent er pO. j ava, which is capable of handling very
simple user programs such as:

{
var x @ integer := 2
wite ("2 +2 =", X + X)

}

Feel free to build your interpreter by extending this skaleersion.

A number of shorfab programs suitable for testing your interpreter are on thie page. You'll
need to generate a much more thorough suite of test progifyos; wish to share these with the
rest of the class, you can attach them to a message sent tassamailing list.

Changes from CS321

The lexical analyzer and parser contained mont end. j ar are essentially identical to those
provided in CS321 last term; this means that you can use yeanersions of the lexer and parser
without modification (provided you have obeyed the existirigrfaces for building Ast’s).

The Ast and type checker inr ont end. j ar have been significantly modified from those pro-
vided in CS321:

e The AST defines asetdf si t or interfaces andccept methods for the abstract classes.

e In order that this (newAst class can be used without further changes or additions, the
checker has been reimplemented in a separateCleessk , which uses visitors. This change
is straightforward, but tedious.

e All uses and definitions of names carry a unique integer itientallowing multiple en-
tities with the same name to be easily distinguished; thisctf Var Dec, FuncDec,
Var Lval ue, andPar am

e EachRecor dExp andRecor dDer ef Lval ue is tagged with théRecor dTypeDec for
the record type it handles.

e EachFuncDec now records the function’s set of free identifiers, i.e. tifears used in the
body of the function that are not parameters or local vagisbf that function nor defined at
top level. This will prove useful later in code generation.

e Top-level definitions of the built-in type namdsdol ean_t ,i nt eger _t , etc.), and func-
tions to test types against theses(bool ean_t ype,i s_i nt eger _t ype, etc.) are now
available inAst .

If you want to use your own AST and checker code, you'll neechédke similar modifications to
it.

Extra Credit

For (substantial) extra credit, implement real numberduiting literalsy ead andwr i t e, arith-
metic operations, and coercions from integers to reals vheeded. You should implement reals
normal IEEE double-precision floats (i.e., as Jdeabl es). Normally, the best way to do this in

a statically-typed language likeab would be to extend the AST to distinguish between real and
integer operators and include explicit integer-to-rearcmn operators, which could be inserted
during type checking. But for this assignment, you needdwddehe AST and checker unchanged,
which means that you must select the correct operatignamically.

Note that the reference implementation daessupport reals at all, so you will be on your own
to interpret the Language Reference Manual to decide wluatect” behavior means. (Of course,
this doesn’t mean that all interpretations are reasongble!

Submitting the Program

Place your Interp class in the single filelnterp.java, and mail it to
cs322-01@s. pdx. edu. You must mail this file as a plain texttachment; the con-
tents of the message itself don’t matter. Your subject limeutd include the word MWL”. We
should then be able to compile your code by creating a fresdctdiry, saving your attachment,
copying in the providedr ont end. j ar and typing

javac -classpath .:frontend.jar Interp.java

If we also copy in the provided filent er pDri ver. cl ass, we should then be able to execute
your interpreter on filé oo. f ab by typing

java -classpath .:frontend.jar InterpDriver foo.fab

Note that we will be using automated mechanisms to read, teygnd test your programs, so
adherence to this naming and mailing policy is important!u Yoay lose points if you fail to
submit your program in the correct way.

If you are working in a team of two, only one team member shgulaimit a solution, which must
have the names of both team members in a comment at the topthtbeteam member should
send mail identifying themselves as a team member.

