
CS 322 Homework 1 – due 1:30p.m., Tuesday, Apr. 24, 2012

(Copyright, Andrew Tolmach 2003-2012. All rights reserved.)

Interpreting fab Programs

Working individually or in teams of two, write an interpreter for (a subset of) thefab language, as
described in thefab Language Reference Manual (available from the course web page).

To ease the implementation task, make the following simplifying assumptions and clarifications:

• By default,exclude anything to do with real numbers; if a program involving reals is given
to the intepreter, the interpreter is permitted to fail in arbitrary ways. Implementing reals
properly is left for extra credit (see below).

• The Manual fails to indicate the range of thefab integer type; it is intended to be a 32-bit
signed value, i.e., in the range [-2147483648,2147483647].

• In implementing the arithmetic operations on integers, assume that they behave the same
way as the corresponding Java operators. (This isn’t an entirely trivial assumption; see the
Java documentation for the division and remainder operations to learn why.)

• In implementing theread statement, assume that the integer literals being read willbe in
the format expected by the JavaInteger.parseInt method. If the input being read is
not of the correct form, the interpreter should halt execution with an error.

The interpreter should take a single command line argument specifying the.fab file to be inter-
preted. It should use the existing front-end code (see below) to perform lexical analysis, parsing,
and checking. The interpreter itself can assume that the ASTbeing interpreted has successfully
passed the checker. The interpreter should execute the userprogram, reading any user input from
standard input and writing any user output to standard output.

If the user program terminates normally, the interpreter should print the message “Interpreter
done” to standard error. In addition, the interpreter should terminate with an appropriate er-
ror message to standard error if any of the following conditions occur: division by zero, fail-
ure to return a value from a function procedure, invalid userinput (including end of file) to a
read statement, array subscript out of bounds, dereferencing anil record pointer. The inter-
preter may also terminate with an uncaught exceptionjava.lang.OutOfMemoryError or
java.lang.StackOverflowError. (Note that the maximum memory and stack sizes can
be controlled using flags to thejava command, but you should normally leave these alone.) Oth-
erwise, the interpreter should never fail on any typechecked program.

A working interpreter is available in the jar fileinterp.jar; it can be run on filefoo.fab by
typing

java -classpath frontend.jar:interp.jar InterpDriver foo.fab

1



Implementation

The filefrontend.jar contains a completefab front-end, which parses and type-checks.fab
files and produces an AST data structure. FileAst.java documents the AST. The front-end can
be executed (up through type-checking) on a filefoo.fab by typing

java -classpath frontend.jar CheckDriver foo.fab

It is recommended that you use this front-end implementation as the basis for your interpreter,
since that is how we will test your submission. If you wish to use your own front-end modules
from CS321, see the section below for important notes.

In any case, your intepreter implementationmust be defined by a classInterp that compiles
and links with theAst andInterpDriver classes provided here; you must not change these
classes. Thus, yourInterp class must implement the method

static void interp(Ast.Program p) throws Interp.InterpError

which returns normally if the program executes successfully and otherwise throws an appropri-
ate exception, whereInterpError is a subclass ofAst.Exception that you define in the
Interp class. Also, you will want to use theVisitor classes andaccept methods inAst
to traverse declarations, statements, expressions, etc. Your interpreter class should be placed in a
separate fileInterp.java, which can be compiled using

javac -classpath .:frontend.jar Interp.java

There is a skeletal implementation in fileInterp0.java, which is capable of handling very
simple user programs such as:

{
var x : integer := 2;
write ("2 + 2 = ", x + x)

}

Feel free to build your interpreter by extending this skeletal version.

A number of shortfab programs suitable for testing your interpreter are on the web page. You’ll
need to generate a much more thorough suite of test programs;if you wish to share these with the
rest of the class, you can attach them to a message sent to the class mailing list.

Changes from CS321

The lexical analyzer and parser contained infrontend.jar are essentially identical to those
provided in CS321 last term; this means that you can use your own versions of the lexer and parser
without modification (provided you have obeyed the existinginterfaces for building Ast’s).

The Ast and type checker infrontend.jar have been significantly modified from those pro-
vided in CS321:

2



• The AST defines a set ofVisitor interfaces andacceptmethods for the abstract classes.

• In order that this (new)Ast class can be used without further changes or additions, the
checker has been reimplemented in a separate classCheck, which uses visitors. This change
is straightforward, but tedious.

• All uses and definitions of names carry a unique integer identifier, allowing multiple en-
tities with the same name to be easily distinguished; this affects VarDec, FuncDec,
VarLvalue, andParam.

• EachRecordExp andRecordDerefLvalue is tagged with theRecordTypeDec for
the record type it handles.

• EachFuncDec now records the function’s set of free identifiers, i.e. identifiers used in the
body of the function that are not parameters or local variables of that function nor defined at
top level. This will prove useful later in code generation.

• Top-level definitions of the built-in type names (boolean t, integer t, etc.), and func-
tions to test types against these (is boolean type, is integer type, etc.) are now
available inAst.

If you want to use your own AST and checker code, you’ll need tomake similar modifications to
it.

Extra Credit

For (substantial) extra credit, implement real numbers, including literals,read andwrite, arith-
metic operations, and coercions from integers to reals where needed. You should implement reals
normal IEEE double-precision floats (i.e., as Javadoubles). Normally, the best way to do this in
a statically-typed language likefab would be to extend the AST to distinguish between real and
integer operators and include explicit integer-to-real coercion operators, which could be inserted
during type checking. But for this assignment, you need to leave the AST and checker unchanged,
which means that you must select the correct operationsdynamically.

Note that the reference implementation doesnot support reals at all, so you will be on your own
to interpret the Language Reference Manual to decide what “correct” behavior means. (Of course,
this doesn’t mean that all interpretations are reasonable!)

Submitting the Program

Place your Interp class in the single file Interp.java, and mail it to
cs322-01@cs.pdx.edu. You must mail this file as a plain textattachment; the con-
tents of the message itself don’t matter. Your subject line should include the word “HW1”. We
should then be able to compile your code by creating a fresh directory, saving your attachment,
copying in the providedfrontend.jar and typing

3



javac -classpath .:frontend.jar Interp.java

If we also copy in the provided fileInterpDriver.class, we should then be able to execute
your interpreter on filefoo.fab by typing

java -classpath .:frontend.jar InterpDriver foo.fab

Note that we will be using automated mechanisms to read, compile, and test your programs, so
adherence to this naming and mailing policy is important! You may lose points if you fail to
submit your program in the correct way.

If you are working in a team of two, only one team member shouldsubmit a solution, which must
have the names of both team members in a comment at the top; theother team member should
send mail identifying themselves as a team member.

4


