Hoping to cover

[Garbage Collection]

¢ Motivation & basics

¢ Introduction to three families of collection algorithms:
+ Reference Counting
¢+ Mark & Sweep
Andrew Tolmach + Copying Collection

¢ Advanced issues and topics

(Slides prepared by Marius Nita.)

Motivation Garbage Collection (GC)

Problems with manual memory management: ¢ The automatic reclamation of unreachable memory (aka

_ _ garbage).
¢ ltis extremely tedious and error-prone.

¢ Universally used for high level languages with closures

supposed to free the memory?) implicitly.
¢ ltis by no means intrinsically efficient. (free is not free.) ¢ Useful for any language that supports heap allocation.
¢ In many cases, the costs outweigh the benefits. ¢ It removes the need for explicit deallocation (no more

delete and free).

¢ Let the GC implementor deal with memory corruption
issues once and for all.

How does it work?

Typically:
¢ The user program (mutator) is linked against a library
known as the runtime system (RTS) (e.g. 1libc).

¢ In the RTS resides the memory allocation service, which
exposes an allocation routine to the user program.

¢ When the user program desires more memory, it
invokes the allocation routine (e.g. malloc).

¢ The allocation service may then perform a collection to
free unused memory before the allocation routine
returns.

Simple heap model

For simplicity, consider a simple heap of “cons cells:”
two-field records, both fields are pointers to other records.
— |

27 ~_ -+

\j\\\ /

STACK , HEAP
,

Terminology

Heap: A directed graph whose nodes are dynamically
allocated records and whose edges are pointers between
nodes. Typically laid out in a contiguous memory space.

Root set: The set of pointers into the heap from an external
source (e.g. the stack, global variables).

Live data: The set of heap records that are reachable by
following paths starting at members of the root set.

Garbage: The set of heap records that are not live.

Note: reachability is a conservative liveness estimate.

Reference counting

Most straightforward collection strategy.

¢ Add a counter field to each record.

¢ Increment a record’s counter when taking a new pointer
to it.

¢ Decrement it when releasing a pointer to it.
¢ When it reaches 0, put the record on a free list.

¢ When allocating a new record, check the free list first.

Reference counting

¢ simple, easy to understand and implement

¢ immediate reclamation of storage: no extended periods
of time in which the collector might be running while the
mutator waits

Reference counting

¢ simple, easy to understand and implement

¢ immediate reclamation of storage: no extended periods
of time in which the collector might be running while the
mutator waits

However,

¢ space overhead (extra field per record)

¢ speed overhead (every pointer assignment is wrapped
in counter operations and checks)

¢ too simple-minded (can’t collect cyclic garbage)

9-b

Reference counting

¢ simple, easy to understand and implement

¢ immediate reclamation of storage: no extended periods
of time in which the collector might be running while the
mutator waits

However,

Stop & Collect

There is no need to get rid of garbage if you do not need
more space.

A better approach is to wait until the allocator fails to allocate
new memory due to lack of space. Then,

¢ The collector takes over and frees enough memory to
satisfy the allocation request.

¢ The allocation now succeeds (or we’re out of memory).

¢ Control is returned to the mutator.

This is known as stop & collect; mutator is effectively paused
while the collector runs.

10

Mark & Sweep

Two phases:

1. Mark each live record by tracing all pointers starting at
the root.

2. Sweep unmarked records (garbage) onto a free list,
making them available for reuse. Unmark marked cells
at the same time.

Already marked records are ignored in the marking step, so
termination is guaranteed.

1

M&S: implementation

struct cell *allocate() {
struct cell *newCell;

if (!free) { /* no more room => */
gcQ; /* try gc *x/
if (!free) /* still no more room */
die();
};
newCell = free; /* take the first free cell */
free = free->c[0]; /* off of the free list */
return newCell;
}

13

M&S: implementation

struct cell {
int mark:1;
struct cell *c[2];
};
struct cell *free, heap[HEAPSIZE], *roots[ROOTS];

Initially all cells are on free list. Use c[0] to link members of
free list.

void init_heap() {
for (i=0; i < HEAPSIZE-1; i++)
heap[i].c[0] = &(heap[i+1]);
heap [HEAPSIZE-1].c[0] = 0;
free = &(heap[0]);
}

12

M&S: implementation

void gc() { void sweep() {
for (i=0; i<ROOTS; i++) for (i=0; i<HEAPSIZE; i++)
mark (roots[i]); if (heap[i].mark)

sweep () ; /* unmark live data */
} heap[i] .mark = 0;
else {
void mark(struct cell *cell) /* sweep garbage */
{ heap[i].c[0] = free;
if (!cell->mark) { free = &(heap[il);
cell->mark = 1; }
mark(cell->c[0]); }
mark(cell->c[1]);
}

}

14

M&S: implementation

void gc() { void sweep() {
for (i=0; i<ROOTS; i++) for (i=0; i<HEAPSIZE; i++)
mark (roots[i]); if (heap[i] .mark)

sweep(); /* unmark live data */
} heap[i] .mark = 0;
else {
void mark(struct cell *cell) /* sweep garbage */
{ heap[i].c[0] = free;
if (lcell->mark) { free = &(heapl[il);
cell->mark = 1; }
mark(cell->c[0]); }
mark(cell->c[1]);
}
}

Notice anything “strange” about mark?

14-a

Copying collection

¢ Divide the heap into two semi-spaces.
¢ Allocate into one space (the to-space).

¢ When it fills up, move the live data to the from-space
and reverse the roles of the two spaces.

¢ Must reassign all pointers as a consequence. (Can'’t
have a copying collector for C!)

¢ Inherently compacting — no fragmentation problems,
good spatial locality.

16

M&S: pointer reversal

It’s recursive!

void mark(struct cell *cell)
{
if (lcell->mark) {
cell->mark = 1;
mark(cell->c[0]);
mark(cell->c[1]);
}
}

It could use a lot of stack, hence a lot of memory!

A trick called pointer reversal can be used to avoid this
problem.

15

Copying (cont’d)

ALLOCATION SPACE| RESERVE SPACE

START OF CYCLE:

DATA

ALLOCATION SPACE| RESERVE SPACE

BEFORE COLLECTION:

‘DATA & GARBAGE |

RESERVE SPACE . ['ALLOCATION SPACE

AFTER COLLECTION:

DATA

17

Copying (cont’d)

¢ The live data is traversed breadth-first using the
to-space itself as the queue (Cheney’s algorithm).

¢ When a record is copied, a forwarding pointer pointing
to the new location is left in the original.

¢ Subsequent attempts to forward that same record will
immediately observe the forwarding pointer.

Copying: details

GRAPH ‘
i*_\ ‘ B
Root
E
D

S = scan pointer F = free pointer

o a B
|:| = copied but not scanned
o 1 0] |
- = copied and scanned
A B C 1 (all pointers are to
S F to-space)
@ NN L]
A B [D !
F
@ I
A B c D !
F
® I N
A B Fc D E !
S F

20

Copying (cont’d)

o | L=

FROM SPACE ROOT SET TO SPACE

BEFORE COLLECTION

[
LT]
—
LT
N N B I
FROM SPACE ROOT SET TO SPACE

AFTER COLLECTION

19

Copying: implementation

struct cell { struct cell *allocate() {
struct cell *c[2]; if (free == end) {
} /* no room */
gcO;

if (free == end)
/* still no room */

struct cell space[2] [HALFSIZE];
struct cell *roots[ROOTS];

struct cell *free = die();
&(space[0] [0]); };
struct cell *end = return free++;
&(space[0] [HALFSIZE]); }

int from_space = O;

int to_space = 1;

21

Copying: implementation Copying: implementation

gcO) { struct cell *forward(struct cell #*p) {
int i; if (p >= &(spacelfrom_space] [0]) &&
struct cell *scan = &(space[to_space] [0]); p < &(space[from_space] [HALFSIZE]))
free = scan; {
for (i = 0 ; i < ROOTS; i++) if (p->c[0] >= &(spacel[to_space] [0]) &&
roots[i] = forward(roots[i]); p—>c[0] < &(spacelto_space] [HALFSIZE]))
while (scan < free) { return p->c[0];
scan—->c[0] = forward(scan->c[0]); else {
scan->c[1] = forward(scan->c[1]); xfree = *p;
scan++; p—>cl0] = free++;
}; return p->c[0];
from_space = 1-from_space; }
to_space = 1-to_space; }
end = *(space[from_space] [HALFSIZE]); else return p;
} }
22 23

Conclusions: M&S Conclusions: Copying

Pros: Pros:
¢ Big win is that it can use the whole heap for allocation. ¢ Simple to understand and implement.
¢ Works well in systems with large amounts of live data — ¢ Allocation is very fast: contiguous free memory.

many long lived objects. ¢ Good locality, favorable effect on cache behavior.

Cons:
Cons:

Fragmentation is a real problem.
¢ g P ¢ It can use only half the heap space for allocation — a

¢ Allocation can be expensive in a heavily fragmented real concern in systems with limited memory.

heap.
P ¢ Poor performance in systems with large amounts of live

¢ Potential spatial locality issues, bad cache behavior. data.

24 25

Further Issues

¢ Distinguishing pointers from integers.

¢ Handling records of various sizes, arrays.

¢ Finding and passing the root set.

¢ Avoiding unnecessary scanning of long-lived data.

¢ Minimizing collection pauses.

¢ Improving memory utilization.
These lead to study of other varieties of collectors:
conservative, generational, incremental, compacting, etc.

26

