
Garbage Collection

Andrew Tolmach

(Slides prepared by Marius Nita.)

1

Hoping to cover

� Motivation & basics

� Introduction to three families of collection algorithms:

� Reference Counting

� Mark & Sweep

� Copying Collection

� Advanced issues and topics

2

Motivation

Problems with manual memory management:

� It is extremely tedious and error-prone.

� It introduces software engineering issues (Who is
supposed to free the memory?)

� It is by no means intrinsically efficient. (free is not free.)

� In many cases, the costs outweigh the benefits.

3

Garbage Collection (GC)

� The automatic reclamation of unreachable memory (aka
garbage).

� Universally used for high level languages with closures
and complex data structures that are allocated
implicitly.

� Useful for any language that supports heap allocation.

� It removes the need for explicit deallocation (no more
delete and free).

� Let the GC implementor deal with memory corruption
issues once and for all.

4

How does it work?

Typically:

� The user program (mutator) is linked against a library
known as the runtime system (RTS) (e.g. libc).

� In the RTS resides the memory allocation service, which
exposes an allocation routine to the user program.

� When the user program desires more memory, it
invokes the allocation routine (e.g. malloc).

� The allocation service may then perform a collection to
free unused memory before the allocation routine
returns.

5

Terminology

Heap: A directed graph whose nodes are dynamically
allocated records and whose edges are pointers between
nodes. Typically laid out in a contiguous memory space.

Root set: The set of pointers into the heap from an external
source (e.g. the stack, global variables).

Live data: The set of heap records that are reachable by
following paths starting at members of the root set.

Garbage: The set of heap records that are not live.

Note: reachability is a conservative liveness estimate.

6

Simple heap model

For simplicity, consider a simple heap of “cons cells:”
two-field records, both fields are pointers to other records.

HEAPSTACK

GLOBALS

7

Reference counting

Most straightforward collection strategy.

� Add a counter field to each record.

� Increment a record’s counter when taking a new pointer
to it.

� Decrement it when releasing a pointer to it.

� When it reaches 0, put the record on a free list.

� When allocating a new record, check the free list first.

8

Reference counting

� simple, easy to understand and implement

� immediate reclamation of storage: no extended periods
of time in which the collector might be running while the
mutator waits

9

Reference counting

� simple, easy to understand and implement

� immediate reclamation of storage: no extended periods
of time in which the collector might be running while the
mutator waits

However,

9-a

Reference counting

� simple, easy to understand and implement

� immediate reclamation of storage: no extended periods
of time in which the collector might be running while the
mutator waits

However,

� space overhead (extra field per record)

� speed overhead (every pointer assignment is wrapped
in counter operations and checks)

� too simple-minded (can’t collect cyclic garbage)

9-b

Stop & Collect

There is no need to get rid of garbage if you do not need
more space.

A better approach is to wait until the allocator fails to allocate
new memory due to lack of space. Then,

� The collector takes over and frees enough memory to
satisfy the allocation request.

� The allocation now succeeds (or we’re out of memory).

� Control is returned to the mutator.

This is known as stop & collect; mutator is effectively paused
while the collector runs.

10

Mark & Sweep

Two phases:

1. Mark each live record by tracing all pointers starting at
the root.

2. Sweep unmarked records (garbage) onto a free list,
making them available for reuse. Unmark marked cells
at the same time.

Already marked records are ignored in the marking step, so
termination is guaranteed.

11

M&S: implementation

struct cell {

int mark:1;

struct cell *c[2];

};

struct cell *free, heap[HEAPSIZE], *roots[ROOTS];

Initially all cells are on free list. Use c[0] to link members of
free list.

void init_heap() {

for (i=0; i < HEAPSIZE-1; i++)

heap[i].c[0] = &(heap[i+1]);

heap[HEAPSIZE-1].c[0] = 0;

free = &(heap[0]);

}

12

M&S: implementation

struct cell *allocate() {

struct cell *newCell;

if (!free) { /* no more room => */

gc(); /* try gc */

if (!free) /* still no more room */

die();

};

newCell = free; /* take the first free cell */

free = free->c[0]; /* off of the free list */

return newCell;

}

13

M&S: implementation

void gc() { void sweep() {

for (i=0; i<ROOTS; i++) for (i=0; i<HEAPSIZE; i++)

mark(roots[i]); if (heap[i].mark)

sweep(); /* unmark live data */

} heap[i].mark = 0;

else {

void mark(struct cell *cell) /* sweep garbage */

{ heap[i].c[0] = free;

if (!cell->mark) { free = &(heap[i]);

cell->mark = 1; }

mark(cell->c[0]); }

mark(cell->c[1]);

}

}

14

M&S: implementation

void gc() { void sweep() {

for (i=0; i<ROOTS; i++) for (i=0; i<HEAPSIZE; i++)

mark(roots[i]); if (heap[i].mark)

sweep(); /* unmark live data */

} heap[i].mark = 0;

else {

void mark(struct cell *cell) /* sweep garbage */

{ heap[i].c[0] = free;

if (!cell->mark) { free = &(heap[i]);

cell->mark = 1; }

mark(cell->c[0]); }

mark(cell->c[1]);

}

}

Notice anything “strange” about mark?

14-a

M&S: pointer reversal

It’s recursive!

void mark(struct cell *cell)

{

if (!cell->mark) {

cell->mark = 1;

mark(cell->c[0]);

mark(cell->c[1]);

}

}

It could use a lot of stack, hence a lot of memory!

A trick called pointer reversal can be used to avoid this
problem.

15

Copying collection

� Divide the heap into two semi-spaces.

� Allocate into one space (the to-space).

� When it fills up, move the live data to the from-space
and reverse the roles of the two spaces.

� Must reassign all pointers as a consequence. (Can’t
have a copying collector for C!)

� Inherently compacting – no fragmentation problems,
good spatial locality.

16

Copying (cont’d)

ALLOCATION SPACERESERVE SPACE

ALLOCATION SPACE RESERVE SPACE

DATA

DATA & GARBAGE

DATA

START OF CYCLE:

BEFORE COLLECTION:

AFTER COLLECTION:

ALLOCATION SPACE RESERVE SPACE

17

Copying (cont’d)

� The live data is traversed breadth-first using the
to-space itself as the queue (Cheney’s algorithm).

� When a record is copied, a forwarding pointer pointing
to the new location is left in the original.

� Subsequent attempts to forward that same record will
immediately observe the forwarding pointer.

18

Copying (cont’d)

FROM SPACE TO SPACEROOT SET

FROM SPACE TO SPACEROOT SET

BEFORE COLLECTION

AFTER COLLECTION

19

Copying: details

S F

S F

FS

A B

(1)

(2)

A B C

A B C D

(3)

(4)

A C DB

(5)

A B C D E

S F

S F

FS

A B

(1)

(2)

A B C

A B C D

(3)

(4)

A C DB

(5)

A B C D E

S F

FS

S F

FS

F

F

A B

(1)

(2)

A B C

A B C D

(3)

(4)

A C DB

S
A B

(1)

(2)

A B C

A B C D

(3)

(4)

A C DB

S

TO-SPACE

GRAPH

Root
Set

B

E
A

DC

FS

S = scan pointer F = free pointer

= copied but not scanned

= copied and scanned
(all pointers are to
 to-space)

F

S

20

Copying: implementation

struct cell { struct cell *allocate() {

struct cell *c[2]; if (free == end) {

} /* no room */

gc();

struct cell space[2][HALFSIZE]; if (free == end)

struct cell *roots[ROOTS]; /* still no room */

struct cell *free = die();

&(space[0][0]); };

struct cell *end = return free++;

&(space[0][HALFSIZE]); }

int from_space = 0;

int to_space = 1;

21

Copying: implementation

gc() {

int i;

struct cell *scan = &(space[to_space][0]);

free = scan;

for (i = 0 ; i < ROOTS; i++)

roots[i] = forward(roots[i]);

while (scan < free) {

scan->c[0] = forward(scan->c[0]);

scan->c[1] = forward(scan->c[1]);

scan++;

};

from_space = 1-from_space;

to_space = 1-to_space;

end = *(space[from_space][HALFSIZE]);

}

22

Copying: implementation

struct cell *forward(struct cell *p) {

if (p >= &(space[from_space][0]) &&

p < &(space[from_space][HALFSIZE]))

{

if (p->c[0] >= &(space[to_space][0]) &&

p->c[0] < &(space[to_space][HALFSIZE]))

return p->c[0];

else {

*free = *p;

p->c[0] = free++;

return p->c[0];

}

}

else return p;

}

23

Conclusions: M&S

Pros:

� Big win is that it can use the whole heap for allocation.

� Works well in systems with large amounts of live data –
many long lived objects.

Cons:

� Fragmentation is a real problem.

� Allocation can be expensive in a heavily fragmented
heap.

� Potential spatial locality issues, bad cache behavior.

24

Conclusions: Copying

Pros:

� Simple to understand and implement.

� Allocation is very fast: contiguous free memory.

� Good locality, favorable effect on cache behavior.

Cons:

� It can use only half the heap space for allocation – a
real concern in systems with limited memory.

� Poor performance in systems with large amounts of live
data.

25

Further Issues

� Distinguishing pointers from integers.

� Handling records of various sizes, arrays.

� Finding and passing the root set.

� Avoiding unnecessary scanning of long-lived data.

� Minimizing collection pauses.

� Improving memory utilization.

These lead to study of other varieties of collectors:

conservative, generational, incremental, compacting, etc.

26

