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Hoping to cover

� Motivation & basics

� Introduction to three families of collection algorithms:

� Reference Counting

� Mark & Sweep

� Copying Collection

� Advanced issues and topics
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Motivation

Problems with manual memory management:

� It is extremely tedious and error-prone.

� It introduces software engineering issues (Who is
supposed to free the memory?)

� It is by no means intrinsically efficient. (free is not free.)

� In many cases, the costs outweigh the benefits.
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Garbage Collection (GC)

� The automatic reclamation of unreachable memory (aka
garbage).

� Universally used for high level languages with closures
and complex data structures that are allocated
implicitly.

� Useful for any language that supports heap allocation.

� It removes the need for explicit deallocation (no more
delete and free).

� Let the GC implementor deal with memory corruption
issues once and for all.
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How does it work?

Typically:

� The user program (mutator) is linked against a library
known as the runtime system (RTS) (e.g. libc).

� In the RTS resides the memory allocation service, which
exposes an allocation routine to the user program.

� When the user program desires more memory, it
invokes the allocation routine (e.g. malloc).

� The allocation service may then perform a collection to
free unused memory before the allocation routine
returns.
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Terminology

Heap: A directed graph whose nodes are dynamically
allocated records and whose edges are pointers between
nodes. Typically laid out in a contiguous memory space.

Root set: The set of pointers into the heap from an external
source (e.g. the stack, global variables).

Live data: The set of heap records that are reachable by
following paths starting at members of the root set.

Garbage: The set of heap records that are not live.

Note: reachability is a conservative liveness estimate.
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Simple heap model

For simplicity, consider a simple heap of “cons cells:”
two-field records, both fields are pointers to other records.

HEAPSTACK

GLOBALS
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Reference counting

Most straightforward collection strategy.

� Add a counter field to each record.

� Increment a record’s counter when taking a new pointer
to it.

� Decrement it when releasing a pointer to it.

� When it reaches 0, put the record on a free list.

� When allocating a new record, check the free list first.
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Reference counting

� simple, easy to understand and implement

� immediate reclamation of storage: no extended periods
of time in which the collector might be running while the
mutator waits
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Reference counting

� simple, easy to understand and implement

� immediate reclamation of storage: no extended periods
of time in which the collector might be running while the
mutator waits

However,

� space overhead (extra field per record)

� speed overhead (every pointer assignment is wrapped
in counter operations and checks)

� too simple-minded (can’t collect cyclic garbage)
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Stop & Collect

There is no need to get rid of garbage if you do not need
more space.

A better approach is to wait until the allocator fails to allocate
new memory due to lack of space. Then,

� The collector takes over and frees enough memory to
satisfy the allocation request.

� The allocation now succeeds (or we’re out of memory).

� Control is returned to the mutator.

This is known as stop & collect; mutator is effectively paused
while the collector runs.
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Mark & Sweep

Two phases:

1. Mark each live record by tracing all pointers starting at
the root.

2. Sweep unmarked records (garbage) onto a free list,
making them available for reuse. Unmark marked cells
at the same time.

Already marked records are ignored in the marking step, so
termination is guaranteed.
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M&S: implementation

struct cell {

int mark:1;

struct cell *c[2];

};

struct cell *free, heap[HEAPSIZE], *roots[ROOTS];

Initially all cells are on free list. Use c[0] to link members of
free list.

void init_heap() {

for (i=0; i < HEAPSIZE-1; i++)

heap[i].c[0] = &(heap[i+1]);

heap[HEAPSIZE-1].c[0] = 0;

free = &(heap[0]);

}
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M&S: implementation

struct cell *allocate() {

struct cell *newCell;

if (!free) { /* no more room => */

gc(); /* try gc */

if (!free) /* still no more room */

die();

};

newCell = free; /* take the first free cell */

free = free->c[0]; /* off of the free list */

return newCell;

}
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M&S: implementation

void gc() { void sweep() {

for (i=0; i<ROOTS; i++) for (i=0; i<HEAPSIZE; i++)

mark(roots[i]); if (heap[i].mark)

sweep(); /* unmark live data */

} heap[i].mark = 0;

else {

void mark(struct cell *cell) /* sweep garbage */

{ heap[i].c[0] = free;

if (!cell->mark) { free = &(heap[i]);

cell->mark = 1; }

mark(cell->c[0]); }

mark(cell->c[1]);

}

}
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M&S: implementation

void gc() { void sweep() {

for (i=0; i<ROOTS; i++) for (i=0; i<HEAPSIZE; i++)

mark(roots[i]); if (heap[i].mark)

sweep(); /* unmark live data */

} heap[i].mark = 0;

else {

void mark(struct cell *cell) /* sweep garbage */

{ heap[i].c[0] = free;

if (!cell->mark) { free = &(heap[i]);

cell->mark = 1; }

mark(cell->c[0]); }

mark(cell->c[1]);

}

}

Notice anything “strange” about mark?

14-a



M&S: pointer reversal

It’s recursive!

void mark(struct cell *cell)

{

if (!cell->mark) {

cell->mark = 1;

mark(cell->c[0]);

mark(cell->c[1]);

}

}

It could use a lot of stack, hence a lot of memory!

A trick called pointer reversal can be used to avoid this
problem.
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Copying collection

� Divide the heap into two semi-spaces.

� Allocate into one space (the to-space).

� When it fills up, move the live data to the from-space
and reverse the roles of the two spaces.

� Must reassign all pointers as a consequence. (Can’t
have a copying collector for C!)

� Inherently compacting – no fragmentation problems,
good spatial locality.
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Copying (cont’d)

ALLOCATION SPACERESERVE SPACE

ALLOCATION SPACE RESERVE SPACE

DATA

DATA  & GARBAGE

DATA

START OF CYCLE:

BEFORE COLLECTION:

AFTER COLLECTION:

ALLOCATION SPACE RESERVE SPACE
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Copying (cont’d)

� The live data is traversed breadth-first using the
to-space itself as the queue (Cheney’s algorithm).

� When a record is copied, a forwarding pointer pointing
to the new location is left in the original.

� Subsequent attempts to forward that same record will
immediately observe the forwarding pointer.
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Copying (cont’d)

FROM  SPACE TO   SPACEROOT SET

FROM  SPACE TO   SPACEROOT SET

BEFORE COLLECTION

AFTER COLLECTION
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Copying: details
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Copying: implementation

struct cell { struct cell *allocate() {

struct cell *c[2]; if (free == end) {

} /* no room */

gc();

struct cell space[2][HALFSIZE]; if (free == end)

struct cell *roots[ROOTS]; /* still no room */

struct cell *free = die();

&(space[0][0]); };

struct cell *end = return free++;

&(space[0][HALFSIZE]); }

int from_space = 0;

int to_space = 1;
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Copying: implementation

gc() {

int i;

struct cell *scan = &(space[to_space][0]);

free = scan;

for (i = 0 ; i < ROOTS; i++)

roots[i] = forward(roots[i]);

while (scan < free) {

scan->c[0] = forward(scan->c[0]);

scan->c[1] = forward(scan->c[1]);

scan++;

};

from_space = 1-from_space;

to_space = 1-to_space;

end = *(space[from_space][HALFSIZE]);

}
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Copying: implementation

struct cell *forward(struct cell *p) {

if (p >= &(space[from_space][0]) &&

p < &(space[from_space][HALFSIZE]))

{

if (p->c[0] >= &(space[to_space][0]) &&

p->c[0] < &(space[to_space][HALFSIZE]))

return p->c[0];

else {

*free = *p;

p->c[0] = free++;

return p->c[0];

}

}

else return p;

}
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Conclusions: M&S

Pros:

� Big win is that it can use the whole heap for allocation.

� Works well in systems with large amounts of live data –
many long lived objects.

Cons:

� Fragmentation is a real problem.

� Allocation can be expensive in a heavily fragmented
heap.

� Potential spatial locality issues, bad cache behavior.
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Conclusions: Copying

Pros:

� Simple to understand and implement.

� Allocation is very fast: contiguous free memory.

� Good locality, favorable effect on cache behavior.

Cons:

� It can use only half the heap space for allocation – a
real concern in systems with limited memory.

� Poor performance in systems with large amounts of live
data.
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Further Issues

� Distinguishing pointers from integers.

� Handling records of various sizes, arrays.

� Finding and passing the root set.

� Avoiding unnecessary scanning of long-lived data.

� Minimizing collection pauses.

� Improving memory utilization.

These lead to study of other varieties of collectors:

conservative, generational, incremental, compacting, etc.
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