
Compiling Object-Oriented
Languages

Andrew P. Black

How are OO Languages Different?

• methods instead of procedures

• method request instead of procedure call

• “full upward funargs"

• inheritance & encapsulation
⇒ frequent method requests

How are OO Languages Different?

• subtyping

• types dictate interface, not implementation

• not in all languages

• code to be executed not known at time of
request

Method Request
• Method request, aka message send, is not the

same as procedure call

Procedure Call
• Code to be executed is identified by name at call site

• Compiler’s job:

aMatrix

MatAdd(aMatrix, aNumber)

MatAdd(m, n)
foreach i in m do …

aSet

SetAdd(aSet, aNumber)

SetAdd(s, n)
i := findEmptySlot(s);
insertAt(s, i, n);

4 4

Method Request
• Code to be executed depends on the receiver

of the request

anObject.add(aNumber)

add(n)
foreach i in self do
…

aSet
 add

remove

add(n)
i := self.findEmptySlot;
self.insertAt(i, n);

aMatrix
add
subtract 4

…

myPoint

Implementing Objects

• Each object contains, conceptua&y:

• a set of named methods

• a set of named instance variables

x
y

+ abs <
- x y

Implementing Objects
• Each object contains, in practice:

• a reference to a shared set of named
methods

• a set of named instance variables

+ abs <
- x y

myPoint
3
4

yourPoint
7
5

Points in Smalltalk

Point class ›› x:y:

Point ›› setX:setY:

Points in Smalltalk

What does “send x” mean?

1. Find the representation of
the receiver

2. Find its list of methods

3. Look for a method named
“x”

4. If there is none, repeat
above in the methods of
the receiver’s superclass …

hdr

3
4

size
+

setX:
setY:

x
… …

s
i
+se
tx

+ arg
 arg isPoint
' ifTrue: [^ (x + arg x) @ (y + arg y)].
' ^ arg adaptToPoint: self andSend: #+

setX: xValue setY: yValue
' x := xValue.
' y := yValue

x
 ^x

Points in Java

 $ javap -c CartesianPoint

Points in Java

Points in Java

 $ javap -c CartesianPoint

Points in Java

 $ javap -c CartesianPoint

 $ javap -c CartesianPoint

Why is method request slow?
1. String compare

2.Linear Search

3. Chaining through super dictionaries

Why does it matter?

It doesn’t matter

• So long as there is a virtual machine
interpreting the byte-code instructions, the
overhead of method request is not much of a
problem

How to speed-up OO?

• Compile them!

• Translate each byte code into the equivalent
series of machine instructions

• the very same instructions that the
interpreter would have executed

• method Request is now a subroutine

… and it’s time-consuming

Recall why:

String Compare
• String comparison is slow (linear in the length

of the shorter string)
• Avoid by using the Flyweight Pattern

• see Smalltalk class Symbol

Linear Search
• Linear Search is slow
• Linear in the number of methods

• Avoid by hashing
• hash can be generated at compile time

• hash function should be part of the language!
• Hashing is constant time, provided _____________

• Space is not free

Why is this slow?
• Chaining through super dictionaries

• Avoid by copying down super methods at compile
time

• e.g., Point inherits Object»printString, so copy the
pair ⟨ #printString, code ptr ⟩ into Point’s method
dictionary.

• Two problems:
1. super-sends
2. space consumption

Simple Cache

• Small cache indexed by pair
⟨ receiver class, method name ⟩

• Speeds–up overall system by 20% to 30%
[Krasner 1983], 37% [Hölzle 1981]

• But: there are lots of classes in the system!

Per request-site Cache

• Idea: use a separate cache for each method
request site.
[Deutsch POPL 1983]: Efficient Implementation of Smalltalk

• Locality says that most of the receivers at a
given site will be of the same class

• e.g., list.collect { each → each.display }

• if list is homogeneous, all of the convert
requests will be to the same method

• Also: method name is now a constant

How to find the Cache?

• if you use one cache for each method request
in the program, there will be a lot of caches

• make caches small, e.g., one entry!

• How do we find the right cache?

• Simple and effective solution: place the
cache “in-line”: in the code in place of the
original request!

3

2.3. Inline Caches
Even with a lookup cache, sending a message still takes considerably longer than calling a simple proce-
dure because the cache must be probed for every message sent. However, sends can be sped up further by
observing that the type of the receiver at a given call site rarely varies; if a message is sent to an object of
type X at a particular call site, it is very likely that the next time the send is executed it will also have a
receiver of type X.

This locality of type usage can be exploited by caching the looked-up method address at the call site, e.g.
by overwriting the call instruction. Subsequent executions of the send code jump directly to the cached
method, completely avoiding any lookup. Of course, the type of the receiver could have changed, and so
the prologue of the called method must verify that the receiver’s type is correct and call the lookup code if
the type test fails. This form of caching is called inline caching since the target address is stored at the send
point, i.e. in the caller’s code [DS84].

Figure 1. Inline Caching

Inline caching is surprisingly effective, with a hit ratio of 95% for Smalltalk code [DS84, Ung86, UP87].
SOAR (a Smalltalk implementation for a RISC processor) would be 33% slower without inline caching
[Ung86]. All compiled implementations of Smalltalk that we know of incorporate inline caches, as does
our SELF system [CUL89].

3. Handling Polymorphic Sends
Inline caches are effective only if the receiver type (and thus the call target) remains relatively constant at
a call site. Although inline caching works very well for the majority of sends, it does not speed up a poly-
morphic call site with several equally likely receiver types because the call target switches back and forth
between different methods.† Worse, inline caching may even slow down these sends because of the extra
overhead associated with inline cache misses. The performance impact of inline cache misses becomes
more severe in highly efficient systems, where it can no longer be ignored. For example, measurements for
the SELF system show that the Richards benchmark spends about 25% of its time handling inline cache
misses [CUL89].

An informal examination of polymorphic call sites in the SELF system showed that in most cases the
degree of polymorphism is small, typically less than ten. The degree of polymorphism of sends seems to
have a trimodal distribution: sends are either monomorphic (only one receiver type), polymorphic (a few

† We will use the term “polymorphic” for call sites where polymorphism is actually used. Consequently, we will use
“monomorphic” for call sites which do not actually use polymorphism even though they might potentially be polymorphic.

receiver = 3@4
call “display”

inline cache

check receiver type

code to display a point

system lookup
routine

display method for points

method prologue

method body

receiver = 3@4
call lookup routine

...

...

calling method BEFORE

AFTER

...

...

calling method

system lookup
routine

Figure from Hölzle, U., Chambers, C., and Ungar, D. 1991. Optimizing dynamically-
typed object-oriented languages with polymorphic inline caches. In Proceedings
ECOOP ’91.

(3@4) display

Inline Caching

• Exploits locality of call site

• site is originally “unlinked”:

• jumps to the general lookup routine

• After first request, site is over-written with call
to the “prologue” of the found method

• prologue checks that the class of the receiver
is that expected by the method

• if it’s not, jump to general lookup routine

Inline Caching is Effective

• 95% effective for Smalltalk

• Overall speedup of 50% on SOAR

• Can be combined with simple ⟨ receiver class,
method name ⟩ cache to handle misses.

What about Polymorphic Sends?

• Example: array := #(1 'a' 2 'b' 3 'c' 4 'd' 5 'e')
 array do: [:each | each printOn: Transcript]

• Worst case for inline-cache:

• Why?

Polymorphic Sends

• Degree of Polymorphism is usually small

• less than 10

• If it’s not small, then it’s large

• Trimodal distribution:
monomorphic, polymorphic, megamorphic.

Polymorphic Inline Caches

• Suppose that we are displaying the elements of a
list

• So far, every element has been a Rectangle

4

receiver types), or megamorphic (very many receiver types). This observation suggests that the perfor-
mance of polymorphic calls can be improved with a more flexible form of caching. This section describes
a new technique to optimize polymorphic sends and presents performance measurements to estimate the
benefits of this optimization.

3.1. Polymorphic Inline Caches
The polymorphic inline cache (PIC) extends inline caching to handle polymorphic call sites. Instead of
merely caching the last lookup result, PICs cache all lookup results for a given polymorphic call site in a
specially-generated stub routine. An example will illustrate this.

Suppose that a method is sending the display message to all elements in a list, and that so far, all list
elements have been rectangles. (In other words, the display message has been sent monomorphically.)
At this point, the situation is identical to normal inline caching:

Figure 2. Inline cache after first send

Now suppose that the next list element is a circle. The inline cache calls the display method for rectan-
gles which detects the cache miss and calls the lookup routine. With normal inline caching, this routine
would rebind the call to the display method for circles. This rebinding would happen every time the
receiver type changed.

With PICs, however, the miss handler constructs a short stub routine and rebinds the call to this stub
routine. The stub checks if the receiver is either a rectangle or a circle and branches to the corresponding
method. The stub can branch directly to the method’s body (skipping the type test in the method prologue)
because the receiver type has already been verified. Methods still need a type test in their prologue because
they can also be called from monomorphic call sites which have a standard inline cache.

Figure 3. Polymorphic inline cache

If the cache misses again (i.e. the receiver is neither a rectangle nor a circle), the stub routine will simply
be extended to handle the new case. Eventually, the stub will contain all cases seen in practice, and there
will be no more cache misses or lookups. Thus, a PIC isn’t a fixed-size cache similar to a hardware data
cache; rather, it should be viewed as an extensible cache in which no cache item is ever displaced by
another (newer) item.

receiver = list element
call “display” method

calling code

...

... check receiver type

code to display
a rectangle

rectangle display method

method prologue

method body

receiver = list element
call PIC stub

calling code

...

...

check receiver type

code to display
a rectangle

if type = rectangle
jump to method

if type = circle
jump to method

call lookup

check receiver type

code to display
a circle

PIC stub

rectangle display method

circle display method

• Now suppose that the next element is a circle

• Inline cache calls prologue of display method
for Rectangles.

• Prologue detects the cache miss, and calls
system lookup routine

• lookup routine finds the correct method

• constructs a stub, and replaces original inline
cache with call to this stub (stub is the PIC)

• PIC stub checks if receiver is a Rectangle or a
Circle, and jumps to the start of the appropriate
method.

• No need to jump to the prologue

4

receiver types), or megamorphic (very many receiver types). This observation suggests that the perfor-
mance of polymorphic calls can be improved with a more flexible form of caching. This section describes
a new technique to optimize polymorphic sends and presents performance measurements to estimate the
benefits of this optimization.

3.1. Polymorphic Inline Caches
The polymorphic inline cache (PIC) extends inline caching to handle polymorphic call sites. Instead of
merely caching the last lookup result, PICs cache all lookup results for a given polymorphic call site in a
specially-generated stub routine. An example will illustrate this.

Suppose that a method is sending the display message to all elements in a list, and that so far, all list
elements have been rectangles. (In other words, the display message has been sent monomorphically.)
At this point, the situation is identical to normal inline caching:

Figure 2. Inline cache after first send

Now suppose that the next list element is a circle. The inline cache calls the display method for rectan-
gles which detects the cache miss and calls the lookup routine. With normal inline caching, this routine
would rebind the call to the display method for circles. This rebinding would happen every time the
receiver type changed.

With PICs, however, the miss handler constructs a short stub routine and rebinds the call to this stub
routine. The stub checks if the receiver is either a rectangle or a circle and branches to the corresponding
method. The stub can branch directly to the method’s body (skipping the type test in the method prologue)
because the receiver type has already been verified. Methods still need a type test in their prologue because
they can also be called from monomorphic call sites which have a standard inline cache.

Figure 3. Polymorphic inline cache

If the cache misses again (i.e. the receiver is neither a rectangle nor a circle), the stub routine will simply
be extended to handle the new case. Eventually, the stub will contain all cases seen in practice, and there
will be no more cache misses or lookups. Thus, a PIC isn’t a fixed-size cache similar to a hardware data
cache; rather, it should be viewed as an extensible cache in which no cache item is ever displaced by
another (newer) item.

receiver = list element
call “display” method

calling code

...

... check receiver type

code to display
a rectangle

rectangle display method

method prologue

method body

receiver = list element
call PIC stub

calling code

...

...

check receiver type

code to display
a rectangle

if type = rectangle
jump to method

if type = circle
jump to method

call lookup

check receiver type

code to display
a circle

PIC stub

rectangle display method

circle display method

• Suppose the next object is a Triangle

• PIC stub routine misses, but is extended
with a third case:

• PIC now handles Rectangles, Circles and
Triangles.

• Eventually, the PIC will handle all cases seen in
practice.

• If the size of the PIC grows too large:

• Mark request site as megamorphic and quit
caching.

Variations

• Inline small methods into PIC stub

• Order classes in PIC by frequency

• Replace linear search by hashing, binary search,
etc.

• Sharing PICS between request sites that have
same method name

• saves space, looses locality

PICs first Implemented for Self

7

miss handler, and thus it is more than five times faster with PICs. Overall, the performance impact of PICs
is relatively small since the SELF compiler is able to inline many sends.

Interestingly, there is no direct correlation between cache misses and the number of polymorphic call sites
(Figure 6). For example, more than 73% of the messages sent in PathCache are from polymorphic call
sites, but the inline cache miss ratio is only 5.6%, much lower than Parser’s miss ratio despite the higher
percentage of polymorphic sends. This suggests that one receiver type dominates at most call sites in
PathCache, whereas the receiver type frequently changes in Parser’s inline caches. Thus, ordering a
PIC’s type tests by frequency of occurrence (as suggested in section 3.2) might be a win for programs like
PathCache.

The space overhead of PICs is very low, typically less than 2% of the compiled code (see Appendix A).
This low overhead is also observed in our daily use of the SELF system, where the space used by PICs
usually does not exceed 50Kbytes in a system which contains about 2 Mbytes of compiled code.

4. Background on Inlining and Type Information
The techniques described so far strive to reduce the cost of sending a message to that of calling a proce-
dure. But even if these techniques were completely successful, the extremely high call frequency would
still impose a severe limit on the performance of dynamically-typed object-oriented programs: even the
fastest procedure call is too slow. For example, the Sun-4/260 on which our measurements were made
executes about 10 million native instructions per second. The optimal calling sequence consists of two
instructions per call. This would seem to limit SELF programs to significantly less than 5 million message
sends per second (MiMS; see [CUL89]) even if every send was implemented optimally. However, many
programs execute at 5 MiMS in our current system, and some benchmarks exceed 20 MiMS. How is this
possible?

The best way to significantly speed up a call is by not executing it at all, i.e. by inlining the called method
into the caller, thus eliminating the calling overhead entirely. In addition, inlining introduces opportunities
for other optimizations like constant folding, common subexpression elimination, and better global register
allocation. The benefits obtained through these optimizations often overshadow the savings from just
removing the call/return overhead and are essential in order to optimize user-defined control structures.

Therefore, the SELF compiler tries to inline as many message sends as possible. However, inlining requires
that the type of the target of a message send be known at compile time so that its definition can be looked
up and inlined. Hence, many optimization techniques have focused on ways to obtain and exploit type
information [Joh87]. The remainder of this section describes existing techniques to extract, preserve, and
exploit this precious type information.

4.1. Type Prediction
Certain messages are almost exclusively sent to particular receiver types. For such messages, the compiler
can predict the type of the receiver based on the message name and insert a run-time type test before the

PolyTest

Richards

PathCache

UI

PrimMaker

Parser

0% 20% 40% 60% 80% 100%
Execution time (normalized to base system)

o
o

o

o
o

 Richards
 PathCache

 UI

 PrimitiveMaker
 Parser

0%

2%

4%

6%

8%

10%

12%

0% 20% 40% 60% 80%

In
lin

e
ca

ch
e

m
is

s
ra

tio

Polymorphic sends

Figure 5. Impact of PICs on performance Figure 6. Inline cache miss ratios

Execution times relative to Self system with inline cache
PolyTest. An artificial benchmark (20 lines) designed to show the highest possible speedup
with PICs. PolyTest consists of a loop containing a polymorphic send of degree 5; the send is
executed a million times. Normal inline caches have a 100% miss rate in this benchmark (no two
consecutive sends have the same receiver type).

Why Inline Caches Win

• They replace indirect calls by direct calls

• Modern hardware optimizes direct calls, e.g.,
with pipelining and lookahead

• The direct call is “right” 95% of the time

Another Approach

• Use indirect calls

• Compile the method name to a small integer
that is used as a table index

• Every class has it’s

• x method at offset 0, its

• y method at offset 1, its

• printOn method at offset 2, etc.

VTable for Virtual methods

2
3

vptr
x
y

Point object Point vtable
getX

...
translate

code
code
code

2
3

red
d

vptr
x
y

color

ColorPoint object
ColorPoint vtable

getX
...

translate
getColor code

vTables

• use multiple indirection instead of search

• hard to do with multiple inheritance

• a great source of research papers

• loose on modern architectures

• no branch prediction through indirect call

AbCon Vectors
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 1, JANUARY

DiskFile InCoreFile

0 Object

I Fig. 3. (a) Before the assignment. (b) After the assignment.

the abstract type may be invoked on the object named by
the identifier. The content of the vector is determined by
the implementation of the object currently named by the
identifier, since it consists of the addresses of the machine
code sequences that implement the operations. Consider
a variable f of abstract type a . The operations that may be
performed on f are determined by a; the addresses of the
appropriate code for these operations depend on the im-
plementation c of the object named by f. Thus the pair
<a, c > uniquely determines an operation vector asso-
ciated with f. In Fig. 3(a), a is InputFile and c is DiskFile.
The vector has one element for each of the InputFile op-
erations read and seek; the values of these elements are
the addresses of the corresponding DiskFile routines.

When an assignment is made to f, the contents of its
operation vector may need to be changed. For example,
when an InCoreFile object is assigned to f, the operation
vector associated with f must become appropriate to the
pair < InputFile, InCoreFile> , as shown in Fig. 3(b).

This scheme replaces the method lookup required by
Smalltalk by a single indexing operation. The cost is an
additional word of storage for the pointer to the operation
vector, and occasional recomputation of the elements of
these vectors on assignment. The operation vectors them-
selves may be shared between all identifiers of identical
abstract type that name objects with the same implemen-
tation, since it is the pair cabstract type, implementa-
tion > that determines the contents of the vector.

I As previously stated, the principal objective of Emerald
is to simplify the construction of distributed programs.

I Systefn concepts such as concurrency, multiple nodes, and

object location are integrated into the language. This dif-
fers from, for example, EPL, where distribution is lay-
ered on an existing language through the use of a prepro-
cessor, and from Accent [27], where distribution is
provided as an operating system facility.

In Emerald, objects encapsulate the notions of process
and data and are the natural unit of distribution. At any
time each Emerald object is located at a specific node.
Conceptually, a node is an object of a system-defined
type. Node objects support node-specific operations,
thereby allowing objects to invoke kernel operations. Such
access to the underlying kernel is analogous to that pro-
vided by kernel ports in Accent.

Programmers may choose to ignore or exploit the con-
cept of object location. In a distributed system, objects
must be able to invoke other objects in a location-inde-
pendent manner. This facility makes network services
transparently accessible. In Emerald, locating the target
of an invocation is the responsibility of the system. An
object is permitted to move between successive invoca-
tions, or even during an invocation. While applications
can control the placement of objects, most applications
can ignore location considerations since the semantics of
local and remote invocation are identical.

Nevertheless, there are two reasons for making location
visible to the programmer: performance and availability.
In a network, the efficiency of interobject communication
is obviously a function of location. An application can
colocate objects that communicate intensely and thus re-
duce the communication overhead. Alternatively, numer-
ical applications can achieve significant performance gains
by placing concurrent subcomputations on different nodes.
An object manager may increase availability by placing
replicas of its objects on different nodes.

