
CS 321, Fall 2010 Languages and Compiler Design I Page 1
Practice Midterm Exam – Suggested Solutions

1. Here’s the list:

Identifier Kind Type
main procedure
x variable INTEGER
sub1 procedure
t type (= STRING)
y variable BOOLEAN
sub2 procedure
a variable t (= STRING)
b variable t (= STRING)
z variable t (= STRING)

2. (a) Here are two leftmost derivations for the same sentence:

E ⇒ E or E ⇒ id or E ⇒ id or E and E ⇒ id or id and E ⇒ id or id and id

E ⇒ E and E ⇒ E or E and E ⇒ id or E and E ⇒ id or id and E ⇒ id or id and id

(b) Here’s a suitably rewritten grammar:

E → E or T

E → T

T → T and F

T → F

F → not F

F → (E)

F → true

F → false

F → id

This problem is completely analogous to arithmetic expressions. Note that in disambiguating, I’ve not only
enforced the given precedence order, but also made both and and or left-associative. The alternative with

E → T or E

T → F and T

is also an acceptable answer, since the the problem didn’t ask for a particular associativity.

3. (a). A grammar is LL(1) if and only if its predictive parsing table has no multiply-defined entries.
Consider the right-hand sides of the first and third productions for S. The terminal (is in FIRST(()) and
also in FIRST((A)). Therefore the table entry for the row labeled S and the column labeled (will have (at
least) two entries for these two productions. So the grammar cannot be LL(1). (Note that there was no
need to calculate any FOLLOW() sets after all!)

(b) This requires removing left-recursion and left-factoring:

S → (S’

S → a

S’ →)

S’ → A)

A → SA’

A’ → ,SA’

A’ → ǫ

October 22, 2010

CS 321, Fall 2010 Languages and Compiler Design I Page 2
Practice Midterm Exam – Suggested Solutions

(c) Here’s C/Java-like code:

void s() {
if (token == ’(’) {
advance();
s1();

} else if (token == ’a’)
advance();

else error();
}

void s1() {
if (token == ’)’)
advance();

else {
a();
if (token == ’)’)
advance();

else
error();

}
}

void a() {
s();
a1();

}

void a1() {
if (token == ’,’) {
advance();
s();
a1();

}
}

(d) First rewrite a1 as a while loop; then inline a1 into a, a into s1, and finally s1 into s.

s()
{
if (token == ’(’) {
advance();
if (token == ’)’)
advance();

else {
s();
while (token == ’,’) {
advance();
s();

};
if (token == ’)’)
advance();

else
error();

}
} else if (token == ’a’)
advance();

else
error();

}

October 22, 2010

CS 321, Fall 2010 Languages and Compiler Design I Page 3
Practice Midterm Exam – Suggested Solutions

4.(a) One answer:

command → filename rdin rdout

→ filename rdout rdint

→ filename rdin pipe

rdin → ’<’ filename

→ ǫ

rdout → ’>’ filename

→ ǫ

pipe → ’|’ filename pipe

→ ’|’ filename rdout

4b. command

filename
 simple

filename
 outfile

filename
 infile

<

rdinrdout

>

filename
 lexer

rdin

< filename
 goodfile.pcat

pipe

|
 parser

pipe

|

filename

filename
 ppast

rdout

> filename
 bug.ast

command

October 22, 2010

CS 321, Fall 2010 Languages and Compiler Design I Page 4
Practice Midterm Exam – Suggested Solutions

5. (a) Regular expressions for patterns:

Number [0-9]+
Short [A-Za-z]
Long [A-Za-z]+$

Short

Short

[A−Za−z]

$

Short

Long

Number

[0−9]

[0−9]

[A−Za−z]

[A−Za−z]

[0−9]

[0−9]

[A−Za−z]

 5c

 5b Number

 5d
Number

[0−9]

[0−9]

[A−Za−z]

[A−Za−z]

[A−Za−z]

[A−Za−z]

Long

Long

[A−Za−z]

$

$
$

(e) Example: abcde0

(Only after the 0 is read does the machine discover that it is not reading a long abcde... rather than the
short a. Characters bcde0 will be rescanned on the next invocation of the lexer.)

October 22, 2010

