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TABLE-DRIVEN TOP-DOWN PARSING

Recursive-descent parsers are highly stylized.

Can use single table-driven program instead, using two data structures:

Parsing table is 2-dimensional table M [X, a]

• One entry for every non-terminal X and terminal a.

• Entries are productions or error indicators.

• Entry M [X, a] says “what to do” when looking for non-terminal X while
next input symbol is a.

Parsing stack handles recursion explicitly

• Holds “what’s left to match” in the input (in reverse order)
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TABLE-DRIVEN PARSING ALGORITHM

(assuming $ = EOF; S = start symbol)

push($); push(S);
repeat

a← input
if top is a terminal or $ then

if top = a then
pop(); advance();

else error();
else if M[top,a] is X→ Y1 Y2 . . . Yk then

pop();
push(Yk); push(Yk−1); ...; push(Y1);
/* do ‘‘semantic action’’ here */

else error();
until top = $

“Semantic action” code is executed once for each step in the leftmost
derivation of an input sentence.
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EXAMPLE TABLE AND EXECUTION

Recall arithmetic expression grammar (after left-recursion removal):

E → TE′

E′ → + TE′ | ǫ

T → FT ′

T ′ → * FT ′ | ǫ

F → (E) | id

The corresponding parsing table is:

id + * ( ) $

E E→TE′ E→TE′

E′ E′→+TE′ E′→ǫ E′→ǫ

T T→FT ′ T→FT ′

T ′ T ′→ǫ T ′→*FT ′ T ′→ǫ T ′→ǫ

F F→id F→(E)

and a sample execution is...
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Stack Input “Output”

$E idx+idy*idz$

$E
′
T idx+idy*idz$ E→TE

′

$E
′
T

′
F idx+idy*idz$ T→FT

′

$E
′
T

′id idx+idy*idz$ F→id

$E
′
T

′ +idy*idz$

$E
′ +idy*idz$ T

′
→ǫ

$E
′
T+ +idy*idz$ E

′
→+TE

′

$E
′
T idy*idz$

$E
′
T

′
F idy*idz$ T→FT

′

$E
′
T

′id idy*idz$ F→id

$E
′
T

′ *idz$

$E
′
T

′
F* *idz$ T

′
→*FT

′

$E
′
T

′
F idz$

$E
′
T

′id idz$ F→id

$E
′
T

′ $

$E
′ $ T

′
→ǫ

$ $ E
′
→ǫ
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PARSING TABLE CONSTRUCTION

FIRST (α) is the set of terminals (and possibly ǫ ) that begin strings
derived from α, where α is any string of grammar symbols (terminals or
non-terminals). (Book defines FIRST () only on individual symbols rather
than strings of symbols; our definition is a consistent extension of the
book’s.)

FOLLOW (A) is the set of terminals (possibly including $) that can
follow the non-terminal A in some sentential form (intermediate
phrase in a derivation), i.e., the set of terminals

{a | S
∗

⇒αAaβ for some α,β }

(This definition is equivalent to the book’s. Note there is an erratum for
Figure 3.5.)
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TABLE CONSTRUCTION ALGORITHM

for each production A→ α do
for each a ∈ FIRST (α) do

add A→ α to M [A, a]
if ǫ ∈ FIRST (α) then

for each b ∈ FOLLOW (A) do
add A→ α to M [A, b]

set any empty elements of M to error
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COMPUTING FIRST

For any string of symbols α, FIRST (α) is the smallest set of terminals
(and ǫ) obeying these rules:

FIRST (aα) = {a} for any terminal a

and any α (empty or non-empty)

FIRST (ǫ) = {ǫ}

FIRST (A) = FIRST (α1) ∪ FIRST (α2) ∪ . . . ∪ FIRST (αn)

where A→α1 | α2 | . . . | αn

are all the productions for A

FIRST (Aα) = if ǫ 6∈ FIRST (A) then FIRST (A)

else (FIRST (A)− {ǫ}) ∪ FIRST (α)
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EXAMPLE FIRST COMPUTATION

FIRST (F ) = FIRST ((E)) ∪ FIRST (id) = {( id}

FIRST (T ′) = FIRST (*FT ′) ∪ FIRST (ǫ) = {* ǫ}

FIRST (T ) = FIRST (FT ′) = FIRST (F ) = {( id}

FIRST (E′) = FIRST (+TE′) ∪ FIRST (ǫ) = {+ ǫ}

FIRST (E) = FIRST (TE′) = FIRST (T ) = {( id}
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COMPUTING FOLLOW

Must compute simultaneously for all non-terminals A.

FOLLOW sets are smallest sets obeying these rules:

• $ is in FOLLOW (S)

• If there is a production A→αBβ, then everything in FIRST (β)− {ǫ} is
in FOLLOW (B).

• If there is a production A→αBβ where β = ǫ or ǫ ∈ FIRST (β), then
everything in FOLLOW (A) is in FOLLOW (B).
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EXAMPLE FOLLOW COMPUTATION

Computation Relevant

Production

FOLLOW (E) = {$} ∪ FIRST ())

= {$ )} F→(E)

FOLLOW (E′) = FOLLOW (E) = {$ )} E→TE′

(what about E′→+TE′ ?)

FOLLOW (T ) = (FIRST (E′)− {ǫ})

∪FOLLOW (E) E→TE′

∪FOLLOW (E′) E′→+TE′

= {+ ) $}

FOLLOW (T ′) = FOLLOW (T ) = {+ ) $} T→FT ′

FOLLOW (F ) = (FIRST (T ′)− {ǫ})

∪FOLLOW (T ) T→FT ′

∪FOLLOW (T ′) T ′→*FT ′

= {* + ) $}
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LL(1) GRAMMARS

A grammar can be used to build a predictive table-driven parser⇔
parsing table M has no duplicate entries.

In terms of FIRST and FOLLOW sets, this means that, for each
production

A→α1 | α2 | . . . | αn

• All FIRST (αi) are disjoint, and

• There is at most one i such that ǫ ∈ FIRST (αi), and, if there is such an
i, FOLLOW (A) ∩ FIRST (αj) = ∅ for all j 6= i.

Such grammars are called LL(1).

• the first L stands for “Left-to-right scan of input.”

• the second L stands for “Leftmost derivation.”

• the 1 stands for “1 token of lookahead.”

No LL(1) grammar can be ambiguous or left-recursive.
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