CS321 Languages and Compiler Design I Fall 2010 Lecture 8

TABLE-DRIVEN TOP-DOWN PARSING

Recursive-descent parsers are highly stylized.

Can use single table-driven program instead, using two data structures:

Parsing table is 2-dimensional table M[X, a]

- One entry for every non-terminal X and terminal a.
- Entries are productions or error indicators.
- Entry M[X,a] says "what to do" when looking for non-terminal X while next input symbol is a.

Parsing stack handles recursion explicitly

Holds "what's left to match" in the input (in reverse order)

TABLE-DRIVEN PARSING ALGORITHM

```
(assuming \$ = EOF; S = start symbol)
 push($); push(S);
 repeat
  a \leftarrow input
  if top is a terminal or $ then
    if top = a then
      pop(); advance();
    else error();
  else if M[top,a] is X \to Y_1 Y_2 \dots Y_k then
    pop();
    \operatorname{push}(Y_k); \operatorname{push}(Y_{k-1}); ...; \operatorname{push}(Y_1);
    /* do "semantic action" here */
  else error();
 until top = \$
```

"Semantic action" code is executed once for each step in the **leftmost** derivation of an input sentence.

EXAMPLE TABLE AND EXECUTION

Recall arithmetic expression grammar (after left-recursion removal):

The corresponding parsing table is:

	id	+	*	()	\$
\overline{E}	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		$E' { ightarrow} { ightarrow} { m T} E'$			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$
T	$T \rightarrow FT'$			$T{\rightarrow}FT'$		
T'		$T' { ightarrow} \epsilon$	$T' \rightarrow *FT'$		$T' { ightarrow} \epsilon$	$T' { ightarrow} \epsilon$
F	$F{ ightarrow}{ m id}$			$F \rightarrow (E)$		

and a sample execution is...

Stack	Input	"Output"
\$E	$id_X+id_Y*id_Z$ \$	
\$E'T	$id_{x}+id_{y}*id_{z}$ \$	$E{ o}TE'$
\$E'T'F	$id_{x}+id_{y}*id_{z}$ \$	$T{ ightarrow}FT'$
\$E'T'id	$id_X+id_Y*id_Z$ \$	$F{ ightarrow}{ m id}$
\$E'T'	$+\mathrm{id}_{\mathtt{y}}*\mathrm{id}_{\mathtt{z}}\$$	
\$E'	$+id_{y}*id_{z}$ \$	$T'{ ightarrow}\epsilon$
\$E'T+	$+id_{y}*id_{z}$ \$	$E' { ightarrow} { ilda T} E'$
\$E'T	$\mathtt{id}_{\mathtt{y}} * \mathtt{id}_{\mathtt{z}} \$$	
\$E'T'F	$\mathtt{id}_{\mathtt{y}} * \mathtt{id}_{\mathtt{z}} \$$	$T{ ightarrow} FT'$
\$E'T'id	$\mathtt{id}_{\mathtt{y}} * \mathtt{id}_{\mathtt{z}} \$$	$F{ ightarrow}{ m id}$
\$E'T'	$*id_{\mathbf{Z}}$ \$	
\$E'T'F*	$*id_{\mathbf{Z}}$ \$	$T' \rightarrow *FT'$
\$E'T'F	$\mathtt{id}_{\mathbf{Z}}\$$	
\$E'T'id	$\mathtt{id}_{\mathbf{Z}}\$$	$F{ ightarrow}{ m id}$
\$E'T'	\$	
\$E'	\$	$T'{ ightarrow}\epsilon$
\$	\$	$E'{ ightarrow}\epsilon$

Parsing Table Construction

 $FIRST(\alpha)$ is the set of **terminals** (and possibly ϵ) that **begin** strings derived from α , where α is any string of grammar symbols (terminals or non-terminals). (Book defines FIRST() only on individual symbols rather than strings of symbols; our definition is a consistent extension of the book's.)

FOLLOW(A) is the set of **terminals** (possibly including \$) that can **follow** the **non-terminal** A in some **sentential form** (intermediate phrase in a derivation), i.e., the set of terminals

$$\{a \mid S \stackrel{*}{\Rightarrow} \alpha A a \beta \text{ for some } \alpha, \beta \}$$

(This definition is equivalent to the book's. Note there is an erratum for Figure 3.5.)

TABLE CONSTRUCTION ALGORITHM

```
for each production A \to \alpha do for each a \in \mathit{FIRST}(\alpha) do add A \to \alpha to M[A, a] if \epsilon \in \mathit{FIRST}(\alpha) then for each b \in \mathit{FOLLOW}(A) do add A \to \alpha to M[A, b] set any empty elements of M to error
```

COMPUTING FIRST

For any string of symbols α , $FIRST(\alpha)$ is the **smallest** set of terminals (and ϵ) obeying these rules:

$$FIRST(a\alpha) = \{a\}$$
 for any terminal a and **any** α (empty or non-empty)

$$FIRST(\epsilon) = \{\epsilon\}$$

$$FIRST(A) = FIRST(\alpha_1) \cup FIRST(\alpha_2) \cup \ldots \cup FIRST(\alpha_n)$$
 where $A \rightarrow \alpha_1 \mid \alpha_2 \mid \ldots \mid \alpha_n$ are all the productions for A

$$\textit{FIRST}(A\alpha) \quad = \quad \text{if } \epsilon \not\in \textit{FIRST}(A) \text{ then } \textit{FIRST}(A) \\ \quad \text{else } (\textit{FIRST}(A) - \{\epsilon\}) \cup \textit{FIRST}(\alpha)$$

EXAMPLE FIRST COMPUTATION

```
FIRST(F) = FIRST((E)) \cup FIRST(id) = \{(id)\}
FIRST(T') = FIRST(*FT') \cup FIRST(\epsilon) = \{*\epsilon\}
FIRST(T) = FIRST(FT') = FIRST(F) = \{(id)\}
FIRST(E') = FIRST(+TE') \cup FIRST(\epsilon) = \{+\epsilon\}
FIRST(E) = FIRST(TE') = FIRST(T) = \{(id)\}
```

COMPUTING FOLLOW

Must compute simultaneously for all non-terminals A.

FOLLOW sets are **smallest** sets obeying these rules:

- \$ is in FOLLOW(S)
- If there is a production $A \rightarrow \alpha B \beta$, then everything in $FIRST(\beta) \{\epsilon\}$ is in FOLLOW(B).
- If there is a production $A \rightarrow \alpha B \beta$ where $\beta = \epsilon$ or $\epsilon \in FIRST(\beta)$, then everything in FOLLOW(A) is in FOLLOW(B).

EXAMPLE FOLLOW COMPUTATION

Computation

Relevant

Production

$$FOLLOW(E) = \{\$\} \cup FIRST())$$

$$F \rightarrow (E)$$

$$FOLLOW(E') = FOLLOW(E) = \{\$\}\}$$
 $E \rightarrow TE'$

$$E{
ightarrow}TE'$$

(what about $E' \rightarrow +TE'$?)

$$FOLLOW(T) = (FIRST(E') - \{\epsilon\})$$

$$\cup$$
 FOLLOW(E)

$$E \rightarrow TE'$$

$$\cup$$
 FOLLOW (E')

$$E' \rightarrow +TE'$$

$$FOLLOW(T') = FOLLOW(T) = \{+\} T \rightarrow FT'$$

$$T {\rightarrow} FT'$$

$$FOLLOW(F) = (FIRST(T') - \{\epsilon\})$$

$$\cup$$
 FOLLOW (T)

$$T \rightarrow FT'$$

$$\cup$$
 FOLLOW(T')

$$T' \rightarrow *FT'$$

$$= \{* +) \$$$

LL(1) GRAMMARS

A grammar can be used to build a predictive table-driven parser \Leftrightarrow parsing table M has no duplicate entries.

In terms of FIRST and FOLLOW sets, this means that, for each production

$$A \rightarrow \alpha_1 \mid \alpha_2 \mid \dots \mid \alpha_n$$

- All $FIRST(\alpha_i)$ are disjoint, and
- There is at most **one** i such that $\epsilon \in FIRST(\alpha_i)$, and, if there is such an i, $FOLLOW(A) \cap FIRST(\alpha_j) = \emptyset$ for all $j \neq i$.

Such grammars are called **LL(1)**.

- the first L stands for "Left-to-right scan of input."
- the second L stands for "Leftmost derivation."
- the 1 stands for "1 token of lookahead."

No LL(1) grammar can be ambiguous or left-recursive.