CS321 Languages and Compiler Design I Fall 2010

CHOOSING A PROGRAMMING LANGUAGE

Costs affected by programming language choice

Execution speed (& space)

Development time

- Program writing
- Compilation, testing, debugging
- (Training)

Maintenance time

Program reading

Factors affecting programming language choice

Costs (as above)
Availability of implementations
Availability of trained programmers (should this matter?)
Politics
Inertia

EVALUATING PROGRAMMING LANGUAGES

How can we judge or compare languages?

Expressiveness

• Technically not interesting; nearly all languages are "Turing-complete."

Appropriateness to domain

- Scientific (numerical) computing
- Business applications
- Artificial intelligence
- Systems programming
- etc.

High-level goals for code

- Easily readable
- Easily writable
- Maintainable
- Efficient

Goals for languages

- Simplicity
- Uniformity (orthogonality)
- Modularity
- Clean syntax
- Maximizes explicit structure
- Clear execution model
- Efficient implementation model

PSU CS321 F'10 LECTURE 3 © 1992-2010 ANDREW TOLMACH

FORTRAN

1954-58

JOHN BACKUS (IBM)

Domain: Numerical computation (still widely used)

Features:

- Arithmetic expressions (evaluated using stack)
- Statements
- Bounded arrays
- Iterative control structures
- Subroutines (no recursion; call-by-reference; separate compilation (in FORTRAN II))
- Common blocks (and EQUIVALENCE declarations)
- I/O using FORMAT directives

Implementation model:

- Fixed run-time storage requirements
- Optimization of numerical computations

ALGOL 60 1957-60 COMMITTEE

(incl. Backus, McCarthy, Naur)

Domain: Numerical computation

Features:

- Carefully defined by "report"; syntax defined with BNF
- Block structure (stack-based implementation)
- Recursive subroutines
- Explicit type declarations
- Scope rules and dynamic lifetimes
- Relational & boolean expressions
- Call-by-value & call-by-name
- Dynamic Array Bounds

Never widely used, but very influential on later languages.

"An improvement on nearly all its successors." - Hoare

PSU CS321 F'10 LECTURE 3 © 1992–2010 ANDREW TOLMACH

Pascal Family 1971- Niklaus Wirth

Pascal 1971

Domain: General-purpose programming, education.

- Simplicity of language and implementation
- Rich type definition facility
- Structured programming methodology
- Suitable for proving programs correct

Modula-2 1979-81

- Modules for abstraction
- Systems programming facilities
- Procedure types

Oberon, Oberon-2, Modula-3

ca. 1990

COBOL 1959-61 DOD-LED COMMITTEE

Domain: Business data processing

Features:

- Separate data description
- Record data structures
- File description/ manipulation
- English-language-like syntax ("Syntactic sugar")
- Early standardization

Many, many lines of code are probably still in wide use.

PSU CS321 F'10 LECTURE 3 © 1992-2010 ANDREW TOLMACH

1972-74 DENNIS RITCHIE (BELL LABS)

Domain: Systems Programming; hacking of all kinds.

Implementation language for UNIX kernel and utilities

- Rich set of operators
- Terse syntax

C

• Easy machine access

Very successful; widely used in engineering and education

Standardized as ANSI C

ADA 1977-83 DOD-SPONSORED COMMITTEE

(Ichbiah)

Domain: Everything, but especially embedded systems.

Features:

- Focus on reliability, safety.
- Real-time control and multiprocessing.
- Programming support environments.
- Very large and verbose language.

Was mandated for much DOD work, but no more. Ada95 added object-oriented features.

PSU CS321 F'10 LECTURE 3 © 1992-2010 ANDREW TOLMACH

SAFER OBJECT-ORIENTED PROGRAMMING

Java

1995- Arnold & Gosling (Sun)

- Cut-down, cleaned-up version of C++.
- Initially hyped for network applications
- Automatic heap storage management (garbage collection).
- Type-safety and runtime memory security.
- Portable runtime environment (Java Virtual Machine).

C# 2001- Microsoft

- Very similar to Java (though supposedly independent).
- Common Language Runtime environment supports multiple source languages.

OBJECT-ORIENTED LANGUAGES

Simula-67

1967 Kristen Nygaard and Ole-Johan Dahl

Discrete event simulations

Smalltalk

1972- Alan Kay (Xerox PARC)

- Graphical user interfaces
- Everything is an object
- Unusual message-sending syntax

C++

1980- Bjarne Stroustrup

- Extended version of C.
- Vehicle for main-stream adoption of OOP.
- Direct support for abstract data types
- Large and very complex language
- Used very widely.

PSU CS321 F'10 LECTURE 3 © 1992-2010 ANDREW TOLMACH

1

LISP AND FUNCTIONAL LANGUAGES

LISP

1959-60 John McCarthy (MIT)

Domain: Artificial intelligence; symbolic computing

- List processing
- "First-class" functions
- Extremely simple program syntax; programs manipulate programs
- Dynamic typing

Many variants, including Common Lisp, Scheme; also related to

Standard ML, Caml

1981- Robin Milner, et al.

- Static but flexible typing
- Rich, orthogonal type system
- Module support

Haskell 1987- Academic Committee

Lazy (demand-driven) evaluation
 No side effects

SCRIPTING LANGUAGES

Domain: Glueing components, system admin, HTML generation, etc.

Perl 1987- Larry Wall

- C-like syntax Static typing
- Dynamically-sized and associative arrays

JavaScript 1995- Netscape,Sun

• Brower-side HTML generation, input validation

• Dynamically-typed, limited OOP support

PHP 1994- Rasmus Lersdorf

• Server-side HTML generation, DBMS integration

Python 1990- Guido von Rossum

- Rich built-in support for lists, tuples, dictionaries OOP support
- Interpreter can be extended with compiled libraries

Ruby 1993- Yukihiro Matsumoto

• Pure OOP