
CS321 Languages and Compiler Design I
Fall 2010
Lecture 3

1

EVALUATING PROGRAMMING LANGUAGES

How can we judge or compare languages?

Expressiveness

• Technically not interesting; nearly all languages are “Turing-complete.”

Appropriateness to domain
• Scientific (numerical) computing
• Business applications
• Artificial intelligence
• Systems programming
• etc.
High-level goals for code
• Easily readable
• Easily writable
• Maintainable
• Efficient

Goals for languages
• Simplicity
• Uniformity (orthogonality)
• Modularity
• Clean syntax
• Maximizes explicit structure
• Clear execution model
• Efficient implementation model

PSU CS321 F’10 LECTURE 3 c© 1992–2010 ANDREW TOLMACH 2

CHOOSING A PROGRAMMING LANGUAGE

Costs affected by programming language choice

Execution speed (& space)
Development time
• Program writing
• Compilation, testing, debugging
• (Training)
Maintenance time
• Program reading

Factors affecting programming language choice

Costs (as above)
Availability of implementations
Availability of trained programmers (should this matter?)
Politics
Inertia

PSU CS321 F’10 LECTURE 3 c© 1992–2010 ANDREW TOLMACH 3

FORTRAN 1954-58 JOHN BACKUS (IBM)

Domain: Numerical computation (still widely used)

Features:

• Arithmetic expressions (evaluated using stack)

• Statements

• Bounded arrays

• Iterative control structures

• Subroutines (no recursion; call-by-reference; separate compilation (in
FORTRAN II))

• Common blocks (and EQUIVALENCE declarations)

• I/O using FORMAT directives

Implementation model:

• Fixed run-time storage requirements

• Optimization of numerical computations

PSU CS321 F’10 LECTURE 3 c© 1992–2010 ANDREW TOLMACH 4



ALGOL 60 1957-60 COMMITTEE

(incl. Backus, McCarthy, Naur)

Domain: Numerical computation

Features:

• Carefully defined by “report”; syntax defined with BNF

• Block structure (stack-based implementation)

• Recursive subroutines

• Explicit type declarations

• Scope rules and dynamic lifetimes

• Relational & boolean expressions

• Call-by-value & call-by-name

• Dynamic Array Bounds

Never widely used, but very influential on later languages.

“An improvement on nearly all its successors.” – Hoare

PSU CS321 F’10 LECTURE 3 c© 1992–2010 ANDREW TOLMACH 5

COBOL 1959-61 DOD-LED COMMITTEE

Domain: Business data processing

Features:

• Separate data description

• Record data structures

• File description/ manipulation

• English-language-like syntax (“Syntactic sugar”)

• Early standardization

Many, many lines of code are probably still in wide use.

PSU CS321 F’10 LECTURE 3 c© 1992–2010 ANDREW TOLMACH 6

PASCAL FAMILY 1971- NIKLAUS WIRTH

Pascal 1971

Domain: General-purpose programming, education.

• Simplicity of language and implementation

• Rich type definition facility

• Structured programming methodology

• Suitable for proving programs correct

Modula-2 1979-81

• Modules for abstraction

• Systems programming facilities

• Procedure types

Oberon, Oberon-2, Modula-3 ca. 1990

PSU CS321 F’10 LECTURE 3 c© 1992–2010 ANDREW TOLMACH 7

C 1972-74 DENNIS RITCHIE (BELL LABS)

Domain: Systems Programming; hacking of all kinds.

Implementation language for UNIX kernel and utilities

• Rich set of operators

• Terse syntax

• Easy machine access

Very successful; widely used in engineering and education

Standardized as ANSI C

PSU CS321 F’10 LECTURE 3 c© 1992–2010 ANDREW TOLMACH 8



ADA 1977-83 DOD-SPONSORED COMMITTEE

(Ichbiah)

Domain: Everything, but especially embedded systems.

Features:

• Focus on reliability, safety.

• Real-time control and multiprocessing.

• Programming support environments.

• Very large and verbose language.

Was mandated for much DOD work, but no more. Ada95 added
object-oriented features.

PSU CS321 F’10 LECTURE 3 c© 1992–2010 ANDREW TOLMACH 9

OBJECT-ORIENTED LANGUAGES

Simula-67 1967 Kristen Nygaard and Ole-Johan Dahl

• Discrete event simulations

Smalltalk 1972- Alan Kay (Xerox PARC)

• Graphical user interfaces

• Everything is an object

• Unusual message-sending syntax

C++ 1980- Bjarne Stroustrup

• Extended version of C.

• Vehicle for main-stream adoption of OOP.

• Direct support for abstract data types

• Large and very complex language

• Used very widely.

PSU CS321 F’10 LECTURE 3 c© 1992–2010 ANDREW TOLMACH 10

SAFER OBJECT-ORIENTED PROGRAMMING

Java 1995- Arnold & Gosling (Sun)

• Cut-down, cleaned-up version of C++.

• Initially hyped for network applications

• Automatic heap storage management (garbage collection).

• Type-safety and runtime memory security.

• Portable runtime environment (Java Virtual Machine).

C# 2001- Microsoft

• Very similar to Java (though supposedly independent).

• Common Language Runtime environment supports multiple source
languages.

PSU CS321 F’10 LECTURE 3 c© 1992–2010 ANDREW TOLMACH 11

LISP AND FUNCTIONAL LANGUAGES

LISP 1959-60 John McCarthy (MIT)

Domain: Artificial intelligence; symbolic computing

• List processing

• “First-class” functions

• Extremely simple program syntax; programs manipulate programs

• Dynamic typing

Many variants, including Common Lisp, Scheme; also related to

Standard ML, Caml 1981- Robin Milner, et al.

• Static but flexible typing

• Rich, orthogonal type system

• Module support

Haskell 1987- Academic Committee

• Lazy (demand-driven) evaluation • No side effects

PSU CS321 F’10 LECTURE 3 c© 1992–2010 ANDREW TOLMACH 12



SCRIPTING LANGUAGES

Domain: Glueing components, system admin, HTML generation, etc.

Perl 1987- Larry Wall

• C-like syntax • Static typing

• Dynamically-sized and associative arrays

JavaScript 1995- Netscape,Sun

• Brower-side HTML generation, input validation

• Dynamically-typed, limited OOP support

PHP 1994- Rasmus Lersdorf

• Server-side HTML generation, DBMS integration

Python 1990- Guido von Rossum

• Rich built-in support for lists, tuples, dictionaries • OOP support

• Interpreter can be extended with compiled libraries

Ruby 1993- Yukihiro Matsumoto
• Pure OOP

PSU CS321 F’10 LECTURE 3 c© 1992–2010 ANDREW TOLMACH 13


