
CS321 Languages and Compiler Design I
Fall 2010

Lecture 16

1



OBJECT-ORIENTED PROGRAMMING

• A set of programming techniques .

• An architectural style.

• A modeling approach.

What is it?

• Program is structured as collection of objects interacting via explicit
interfaces .

• Objects encapsulate state .

• Objects are (usually) grouped into classes that share common
interface.

• Classes are related by inheritance .

• Operations in interface use dynamic binding .

PSU CS321 F’10 LECTURE 16 c© 1992–2010 ANDREW TOLMACH 2



WHY USE OBJECTS ?

• The real world can often by modeled by collection of interacting
objects. Classic examples: simulation, user interfaces. But OOP can be
used for any kind of programming task.

• Building programs around objects allows model, specification, program
to share common framework.

• A data object can be added or changed without affecting other existing
objects, leading to easier maintenance . (Compare top-down procedural
design.)

• Data abstraction/encapsulation enables easier re-use of code.

PSU CS321 F’10 LECTURE 16 c© 1992–2010 ANDREW TOLMACH 3



OBJECTS VS . ADT’ S

Classes are a lot like ADT definitions, and objects are a lot like values of
the ADT. What’s the difference?

• In most OO languages, there is a superficial syntactic difference: each
function defined for an object takes the object itself as an implicit argu-
ment.

s.add(x) ; OO style

Set.add(s,x) ; ADT style

• There is a corresponding change in metaphor : instead of applying
functions to values, we talk of “sending messages to objects.”

• OO languages have some form of inheritance and dynamic binding .

Important OO Languages: Simula 67, Smalltalk, C++, Java, C#

Differences among languages: Are there types? Is everything an object?

(Note: Some OO languages, e.g., Self, JavaScript, have objects but no
classes.)

PSU CS321 F’10 LECTURE 16 c© 1992–2010 ANDREW TOLMACH 4



INHERITANCE

Often one object class differs only slightly from another one, perhaps
previously defined.

The similarity may be:

• in how the classes can be used; and/or

• in how the classes are implemented.

To avoid having to define a class twice, we might like to inherit most of
the definition of one class from the other, possibly making just a few
alterations. If class B inherits from class A, we say B is a subclass of A,
and A is a superclass of B. This generalizes to an inheritance hierarchy
among different classes.

At least two kinds of inheritance notions are useful, depending on the
kind of similarity we are trying to take advantage of.

PSU CS321 F’10 LECTURE 16 c© 1992–2010 ANDREW TOLMACH 5



SUBTYPING

We’ve already seen subtyping (inheritance of specification), which is
relevant where one class has similar external behavior (available
operations) to the another. Subtyping usually expresses a conceptual
“is-a” relationship between the concepts represented by the classes.

For example, in a GUI, we might manipulate “lines,” “text,” and “bitmaps,”
all of which are conceptually a specialized kind of “display object.” Thus
all should respond appropriately to messages like “display yourself” or
“translate your screen origin.”

Recall key idea: if B is a subclass of A, should be able to use a B instance
wherever an A instance is wanted. (Not vice-versa, since Bs may be able
to do things that As cannot.) This is sometimes called “simulation.”

Note that the implementations of these operators may differ widely from
one subclass to another, and might not be implemented in the common
superclass at all.

PSU CS321 F’10 LECTURE 16 c© 1992–2010 ANDREW TOLMACH 6



JAVA SUBTYPING EXAMPLE

abstract class DisplayObject extends Object {

abstract void draw();

abstract void translate(int d_x, int d_y);

}

class Line extends DisplayObject {

int x0,y0,x1,y1; // coordinates of endpoints

Line (int x0,int y0,int x1, int y1 {

this.x0 = x0; this.y0 = y0; this.x1 = x2; this.y1 = y1;

}

void translate (int d_x, int d_y) {

x0 += d_x; y0 += d_y;

x1 += d_x; y1 += d_y;

}

void draw () {

moveto(x0,y0);

drawto(x1,y1);

}

}

PSU CS321 F’10 LECTURE 16 c© 1992–2010 ANDREW TOLMACH 7



class Text extends DisplayObject {

int x,y; // coordinates of origin

string s; // text contents

Text(int x, int y, String s) {

this.x = x; this.y = y; this.s = s;

}

void translate (int d_x,int d_y) {

x += d_x; y += d_y;

}

void draw () {

moveto(x,y);

write(s);

}

}

ArrayList<DisplayObject> v = new ArrayList();

v.add (new Line(0,0,10,10));

v.add (new Text(5,5,"hello"));

for (int i = 0; i < v.size(); i++) {

DisplayObject d = v.get(i);

d.draw();

}

PSU CS321 F’10 LECTURE 16 c© 1992–2010 ANDREW TOLMACH 8



INHERITANCE OF IMPLEMENTATION

Alternatively, we may have two classes whose implementations are very
similar.

Then we’d like one class to inherit its implementation from the other, to
avoid writing the same code twice.

Example: Could handle common code for translation in the superclass.

Note: In general, A can inherit implementation from B even when the
conceptual object represented by A is not a specialization of that
represented by B.

PSU CS321 F’10 LECTURE 16 c© 1992–2010 ANDREW TOLMACH 9



JAVA IMPLEMENTATION INHERITANCE EXAMPLE

We would like to re-use the same translate code for all subclasses of
DisplayObject.

We can do this using implementation inheritance, but note that a little bit
of code redesign is required.

abstract class DisplayObject extends Object {

int x0, y0; // coordinates of object origin

DisplayObject(int x0, int y0) {

this.x0 = x0; this.y0 = y0;

}

abstract void draw();

void translate(int d_x,int d_y) {

x0 += d_x; y0 += d_y;

}

}

PSU CS321 F’10 LECTURE 16 c© 1992–2010 ANDREW TOLMACH 10



class Line extends DisplayObject {

int v_x, v_y; // vector to other endpoint

Line(int x0,int y0,int x1,int y1){

super(x0,y0); this.v_x = x1 - x0; this.v_y = y1 - y0;

}

void draw () {

moveto(x0,y0);

drawto(x0+v_x,y0+v_y);

}

}

class Text extends DisplayObject {

String s;

Text(int x0, int y0, String s) {

super(x0,y0); this.s = s_arg;

}

void draw () {

moveto(x0,y0);

write(s);

}

}

PSU CS321 F’10 LECTURE 16 c© 1992–2010 ANDREW TOLMACH 11



EXTENSION WITHOUT CODE CHANGE

In particular, we often want to extend an existing system with new
features, changing existing code as little as possible. Try to do this by
adding a new object class that inherits most of its functionality from an
existing class, but implements its own distinctive features.

The key idea here is that calls are always dispatched to the original
receiving object, so that superclass code can access functionality
defined in the subclasses .

Example: Consider adding a translate and draw function for all display
objects.

PSU CS321 F’10 LECTURE 16 c© 1992–2010 ANDREW TOLMACH 12



abstract class DisplayObject extends Object {

int x0, y0; // coordinates of object origin

DisplayObject(int x0, int y0) {

this.x0 = x0; this.y0 = y0;

}

abstract void draw();

void translate(int d_x,int d_y) {

x0 += d_x; y0 += d_y;

}

void translate_and_draw(int d_x,int d_y) {

translate(d_x,d_y);

draw();

}

}

ArrayList<DisplayObject) v = new ArrayList();

v.add (new Line(0,0,10,10));

v.add (new Text(5,5,"hello"));

for (int i = 0; i < v.size(); i++) {

DisplayObject d = v.get(i);

d.translate_and_draw(1,1);

}

PSU CS321 F’10 LECTURE 16 c© 1992–2010 ANDREW TOLMACH 13



OVERRIDING IN SUBCLASSES

Sometimes we want a new subclass to override the implementation of a
superclass function. Again, the rule that all internal messages go to the
original receiver is essential here, to make sure most-specific version of
code gets invoked.

Example: Add new bitmap object, with its own version of translate,
which scales the argument.

PSU CS321 F’10 LECTURE 16 c© 1992–2010 ANDREW TOLMACH 14



class Bitmap extends DisplayObject {

int sc; // scale factor

boolean[] b; // bitmap

Bitmap(int x0, int y0, int sc, boolean[] b) {

super(x0_arg * sc,y0_arg * sc);

this.sc = sc; this.b = b;

}

void translate (int d_x,int d_y) {

x0 += x0 + (d_x * sc);

y0 += y0 + (d_y * sc);

}

void draw () {

moveto(x0,y0);

blit(b);

}

}

An alternative way to implement translate is using the super pseudo-
variable:

void translate (int d_x, int d_y) {

super.translate(d_x * sc, d_y * sc);

}

PSU CS321 F’10 LECTURE 16 c© 1992–2010 ANDREW TOLMACH 15



SPECIFICATION VS . IMPLEMENTATION

Often we’d like to use both subtyping and implementation-based
inheritance, but the superclasses we want for these purposes may be
different.

For example, suppose we want to define new kind of display object,
called a DisplayGroup, whose values are collections of other display
objects that can be translated or drawn as a unit. (This allows us to
construct pictures in hierarchies.)

We want to be able to insert and retrieve the elements of a group just as
for objects of the Java library class ArrayList, using add, get, size, etc.

For subtyping purposes, our group class should clearly be a subclass of
DisplayObject, but for implementation purposes , it would be very
convenient to make it a subclass of ArrayList

Which should we pick?

PSU CS321 F’10 LECTURE 16 c© 1992–2010 ANDREW TOLMACH 16



MULTIPLE INHERITANCE AND INTERFACES

Some languages (e.g. C++) permit multiple inheritance to handle this
problem. But multiple inheritance can have confusing semantics, and
supporting it can cost some runtime efficiency.

Java has only single inheritance, but it also has a notion of interfaces ;
these are like abstract class descriptions with no variables or method
implementations at all, and are just the thing for describing subtyping.

So in Java, we could define an interface Displayable rather than the
abstract class DisplayObject, and make DisplayGroup a subclass of
ArrayList that implements Displayable.

interface Displayable {

void translate(int d_x, int d_y);

void draw();

}

PSU CS321 F’10 LECTURE 16 c© 1992–2010 ANDREW TOLMACH 17



class Line implements Displayable {

int x0,y0,x1,y1; // coordinates of endpoints

Line (int x0,int y0,int x1,int y1) { ... }

public void translate (int d_x, int d_y) { ... }

public void draw () { ... }

}

class DisplayGroup extends java.util.ArrayList<Displayable>

implements Displayable {

public void translate(int d_x, int d_y) {

for (int i = 0; i < this.size(); i++) {

Displayable d = this.get(i);

d.translate(d_x,d_y); }

}

public void draw () {

for (int i = 0; i < size(); i++) {

Displayable d = this.get(i);

d.draw(); }

}

}

DisplayGroup d = new DisplayGroup();

d.add(new Line(1,2,3,4)); d.add(new Line(4,5,6,7));

d.translate(100,200); d.draw();

PSU CS321 F’10 LECTURE 16 c© 1992–2010 ANDREW TOLMACH 18



ALTERNATIVE APPROACH

Another approach would be to define DisplayGroup as a subclass of
DisplayObject using an ArrayList field to hold the group contents.
This is sometimes called delegation. But then we have to redefine all the
(useful) ArrayList methods explicitly (and boringly) for DisplayGroup,
and pay the cost of extra method calls.

class DisplayGroup extends DisplayObject {

ArrayList<DisplayObject> contents;

DisplayGroup() {

contents = new ArrayList<DisplayObject>();

}

boolean add(DisplayObject d) {

return contents.add(d);

}

DisplayObject get(int index) {

return contents.get(index);

}

int size() {

return contents.size();

}

}

PSU CS321 F’10 LECTURE 16 c© 1992–2010 ANDREW TOLMACH 19


