
CS321 Languages and Compiler Design I
Fall 2010

Lecture 15

1



POLYMORPHISM

So far we’ve implicitly assumed that every value, identifier, expression,
function, etc. has a unique type.

But often it makes sense for program entities to be used at many different
types.

Some operations only work on one type of value:

• (e1 or e2) makes sense only if e1 and e2 are boolean

Some operations work on any type of value:

• e[42] makes sense if e has type array of T for any type T .

Some operations work on a restricted set of values:

• (e1 < e2) makes sense if e1 and e2 both have type int or both have
type float

PSU CS321 F’10 LECTURE 15 c© 1992–2010 ANDREW TOLMACH 2



TERMINOLOGY

A monomorphic operator works only one type of argument. (e.g.
boolean operators).

A polymorphic operator works on multiple types of arguments.

• In parametric polymorphism, essentially the same implementation is
used for all types of arguments (e.g. array indexing).

• In ad-hoc polymorphism, different implementations are used for
different types of arguments (e.g. numeric comparison).

• Subtype polymorphism is a kind of ad-hoc polymorphism based on
the idea that any operation on a given type will also work on its subtypes.

PSU CS321 F’10 LECTURE 15 c© 1992–2010 ANDREW TOLMACH 3



SUBTYPE POLYMORPHISM FOR COLLECTIONS

abstract class Temp {

double t;

abstract boolean isCold();

}

class FTemp extends Temp {

FTemp (double t) {this.t = t;}

public String toString() {return "" + t + "F";}

boolean isCold() {return t < 32.0;}

}

class CTemp extends Temp {

CTemp (double t) {this.t = t;}

public String toString() {return "" + t + "C";}

boolean isCold() {return t < 0;}

}

class TList {

Temp data;

TList next;

TList(Temp data, TList next) { this.data = data; this.next = next; }

}

class Test1 {

public static void main (String argv[]) {

TList tlist = null;

tlist = new TList(new CTemp(-2.0),tlist);

tlist = new TList(new FTemp(31.0),tlist);

for (TList tl = tlist; tl != null; tl = tl.next)

if (tl.data.isCold()) System.out.println("" + tl.data + " brr...");

}

}

PSU CS321 F’10 LECTURE 15 c© 1992–2010 ANDREW TOLMACH 4



LIMITATIONS OF SUBTYPE POLYMORPHISM

Subtype polymorphism works very well when we have a collection of
different kinds of objects that can be accessed by the same interface
signature.

• E.g., in Java, this means extending a single Class or implementing a
single Interface.

• The static type of the collection elements is their common super-type.

• Different sub-classes may implement methods in completely different
ways.

But there is a problem: when we extract an object from a collection, its
static type is the common super-type.

• We lose (static) information about which particular class the object
belongs to at runtime.

Example of code that will not typecheck...

PSU CS321 F’10 LECTURE 15 c© 1992–2010 ANDREW TOLMACH 5



abstract class Temp {

double t;

abstract boolean isCold();

}

class FTemp extends Temp {

FTemp (double t) {this.t = t;}

public String toString() {return "" + t + "F";}

boolean isCold() {return t < 32.0;}

CTemp toCelsius() {return new CTemp((t-32.0) * 5.0/9.0);}

}

class CTemp extends Temp {

CTemp (double t) {this.t = t;}

public String toString() {return "" + t + "C";}

boolean isCold() {return t < 0;}

FTemp toFahrenheit() {return new FTemp(9.0/5.0 * t + 32.0);}

}

class TList {

Temp data;

TList next;

TList(Temp data, TList next) { this.data = data; this.next = next; }

}

class Test2 {

public static void main (String argv[]) {

TList ftlist = null;

ftlist = new TList(new FTemp(32.0),ftlist);

ftlist = new TList(new FTemp(212.0),ftlist);

for (TList tl = ftlist; tl != null; tl = tl.next)

System.out.println ("" + tl.data + " = " +((CTemp)tl.data).toFahrenheit());

TList ctlist = null;

ctlist = new TList(new CTemp(0.0),ctlist);

ctlist = new TList(new CTemp(100.0),ctlist);

for (TList tl = ctlist; tl != null; tl = tl.next)

System.out.println ("" + tl.data + " = " + ((FTemp) tl.data).toCelsius());

}

}

PSU CS321 F’10 LECTURE 15 c© 1992–2010 ANDREW TOLMACH 6



AN UNPLEASANT SOLUTION: DOWNCASTING AT RUNTIME

abstract class Temp {

double t;

abstract boolean isCold();

}

class FTemp extends Temp {

FTemp (double t) {this.t = t;}

public String toString() {return "" + t + "F";}

boolean isCold() {return t < 32.0;}

CTemp toCelsius() {return new CTemp((t-32.0) * 5.0/9.0);}

}

class CTemp extends Temp {

CTemp (double t) {this.t = t;}

public String toString() {return "" + t + "C";}

boolean isCold() {return t < 0;}

FTemp toFahrenheit() {return new FTemp(9.0/5.0 * t + 32.0);}

}

class TList {

Temp data;

TList next;

TList(Temp data, TList next) { this.data = data; this.next = next; }

}

class Test2a {

public static void main (String argv[]) {

TList ftlist = null;

ftlist = new TList(new FTemp(32.0),ftlist);

ftlist = new TList(new FTemp(212.0),ftlist);

for (TList tl = ftlist; tl != null; tl = tl.next)

System.out.println ("" + tl.data + " = " + ((FTemp)tl.data).toCelsius());

TList ctlist = null;

ctlist = new TList(new CTemp(0.0),ctlist);

ctlist = new TList(new CTemp(100.0),ctlist);

PSU CS321 F’10 LECTURE 15 c© 1992–2010 ANDREW TOLMACH 7



for (TList tl = ctlist; tl != null; tl = tl.next)

System.out.println ("" + tl.data + " = " + ((CTemp)tl.data).toFahrenheit());

}

}

PSU CS321 F’10 LECTURE 15 c© 1992–2010 ANDREW TOLMACH 8



ANOTHER UNPLEASANT SOLUTION: DUPLICATING CODE

abstract class Temp {

double t;

abstract boolean isCold();

}

class FTemp extends Temp {

FTemp (double t) {this.t = t;}

public String toString() {return "" + t + "F";}

boolean isCold() {return t < 32.0;}

CTemp toCelsius() {return new CTemp((t-32.0) * 5.0/9.0);}

}

class CTemp extends Temp {

CTemp (double t) {this.t = t;}

public String toString() {return "" + t + "C";}

boolean isCold() {return t < 0;}

FTemp toFahrenheit() {return new FTemp(9.0/5.0 * t + 32.0);}

}

class FTList {

FTemp data;

FTList next;

FTList(FTemp data, FTList next) { this.data = data; this.next = next; }

}

class CTList {

CTemp data;

CTList next;

CTList(CTemp data, CTList next) { this.data = data; this.next = next; }

}

class Test3 {

public static void main (String argv[]) {

FTList ftlist = null;

ftlist = new FTList(new FTemp(32.0),ftlist);

ftlist = new FTList(new FTemp(212.0),ftlist);

PSU CS321 F’10 LECTURE 15 c© 1992–2010 ANDREW TOLMACH 9



for (FTList tl = ftlist; tl != null; tl = tl.next)

System.out.println ("" + tl.data + " = " + tl.data.toCelsius());

CTList ctlist = null;

ctlist = new CTList(new CTemp(0.0),ctlist);

ctlist = new CTList(new CTemp(100.0),ctlist);

for (CTList tl = ctlist; tl != null; tl = tl.next)

System.out.println ("" + tl.data + " = " + tl.data.toFahrenheit());

}

}

PSU CS321 F’10 LECTURE 15 c© 1992–2010 ANDREW TOLMACH 10



PARAMETRIC POLYMORPHISM

Downcasting is ugly, carries runtime cost, and may cause runtime
failures.

Code duplication is ugly and error-prone.

A better approach is to observe that if every element of the collection has
the same type, we should be able to track this fact statically.

Idea: can add type parameters to data type and function definitions, and
instantiate them differently at each use.

Example...

PSU CS321 F’10 LECTURE 15 c© 1992–2010 ANDREW TOLMACH 11



abstract class Temp {

double t;

abstract boolean isCold();

}

class FTemp extends Temp {

FTemp (double t) {this.t = t;}

public String toString() {return "" + t + "F";}

boolean isCold() {return t < 32.0;}

CTemp toCelsius() {return new CTemp((t-32.0) * 5.0/9.0);}

}

class CTemp extends Temp {

CTemp (double t) {this.t = t;}

public String toString() {return "" + t + "C";}

boolean isCold() {return t < 0;}

FTemp toFahrenheit() {return new FTemp(9.0/5.0 * t + 32.0);}

}

class List<Elem> {

Elem data;

List<Elem> next;

List(Elem data, List<Elem> next) { this.data = data; this.next = next; }

}

class Test4 {

public static void main (String argv[]) {

List<FTemp> ftlist = null;

ftlist = new List<FTemp>(new FTemp(32.0),ftlist);

ftlist = new List<FTemp>(new FTemp(212.0),ftlist);

for (List<FTemp> tl = ftlist; tl != null; tl = tl.next)

System.out.println ("" + tl.data + " = " + tl.data.toCelsius());

List<CTemp> ctlist = null;

ctlist = new List<CTemp>(new CTemp(0.0),ctlist);

ctlist = new List<CTemp>(new CTemp(100.0),ctlist);

for (List<CTemp> tl = ctlist; tl != null; tl = tl.next)

System.out.println ("" + tl.data + " = " + tl.data.toFahrenheit());

}

}

PSU CS321 F’10 LECTURE 15 c© 1992–2010 ANDREW TOLMACH 12



PARAMETIC POLYMORPHISM IS WIDESPREAD

Appears under many names:

• C++ templates

• Java and C# generics

• Ada generics

• Functional languages (ML, Haskell, etc.)

And with many implementation alternatives:

• Implicit or explicit instantiation.

• Separate copy of the code for each instantiation, or

• One copy of the code for all instantiations (requires a uniform data
representation for all instantiable types).

• Reduction to subtype polymorphism + casting.

PSU CS321 F’10 LECTURE 15 c© 1992–2010 ANDREW TOLMACH 13



NEED FOR ABSTRACTION

Suppose we have a facility for defining new type names in our language
and we type-check using name equivalence.

E.g., let’s implement a stack using an array (in pseudo-fab syntax):

type stack := @integer;

var s := stack {100 of 0};

var top := 0;

func push(i:integer, s: stack) {

s[top] := i;

top := top + 1

}

Are named types like this “just as good” as the built-in types? Is a new
type name a genuinely new type, equivalent to the built-in types?

No, if user of stack can abuse stack discipline, e.g.,

s[random] := 42;

• stack, s, t, push, etc. aren’t grouped together. • Intended use of stack
isn’t explicit.

PSU CS321 F’10 LECTURE 15 c© 1992–2010 ANDREW TOLMACH 14



ABSTRACTION FOR BUILT-IN TYPES

Contrast this with the situation for built-in types with machine support.

For example, we don’t normally write code like

if (x & 0x80000000) printf ("x is negative");

to inspect an integer. Instead we rely on built-in operators (like <) to
interface to the underlying representation.

Can we do the same for user-defined types?

PSU CS321 F’10 LECTURE 15 c© 1992–2010 ANDREW TOLMACH 15



ABSTRACT DATA TYPES (ADT’S)

Ideally, to mimic the behavior of built-in hardware-based types,
user-defined types should have an associated set of operators, and it
should only be possible to manipulate types via their operators (and
maybe a few generic operators such as assignment or equality testing).

In particular, when new types are given a representation in terms of
existing types, it shouldn’t be possible for programs to inspect or change
the fields of the representation.

Such a type is called an abstract data type (ADT), because to clients
(users) of the type, its implementation is hidden; only its interface is
known.

We can implement an ADT by combining a type definition together with a
set of function operating on the type into a module (or package, cluster,
class, etc.) Additional hiding features are needed to make the type’s
representation more-or-less invisible outside the module.

PSU CS321 F’10 LECTURE 15 c© 1992–2010 ANDREW TOLMACH 16



ABSTRACTION

Compare to procedural abstraction: procedure can be called if its type
is known, even if its implementation is not.

Benefits of abstraction:

• Implementation and client can be developed independently.

• Implementation can be changed without affecting client’s code.

• Improves clarity, maintainability, etc.

PSU CS321 F’10 LECTURE 15 c© 1992–2010 ANDREW TOLMACH 17



EXAMPLE: ADT FOR ENVIRONMENTS (PSEUDO-FAB)

signature env_sig {

type env;

var empty : env;

func extend (e:env,s:string,i:integer) -> env;

func lookup (e:env,s:string) -> integer

}

module env_mod : env_sig {

record env = { id: string, val:integer, next : env };

var empty : env := nil;

func extend (e:env;s:string;i:integer) -> env {

return env {id := s, val := i, next := e }

};

func lookup (e:env,s:string) -> integer {

while e <> nil do

if e.id = s then

return e.val

else e := e.next;

return -1

}

}

PSU CS321 F’10 LECTURE 15 c© 1992–2010 ANDREW TOLMACH 18



EXAMPLE FROM CLIENT’S SIDE

Client code is restricted:

[* client *]

var x := env_mod.empty;

x := env_mod.extend(x,"abc",99);

env_mod.lookup(x,"def");

write (x.next.val); [* NONO! *]

Thus, the implementation of the operations can be changed without
affecting clients.

(The following implementation is not actually as general as the first one,
but it still matches the signature.)

PSU CS321 F’10 LECTURE 15 c© 1992–2010 ANDREW TOLMACH 19



ALTERNATIVE IMPLEMENTATION OF ENVIRONMENT ADT

module env_mod2 : env_sig {

record envr = { id: string; val:integer };

type env = @envr;

var empty : @envr := env { 100 of nil };

func extend (e:env,s:string,i:integer) -> env {

var c := 0;

while (e[c] <> nil) do c := c + 1;

e[c] := envr { id = s, val = i: };

return e

}

func lookup (e:env,s:string) -> integer {

var c := 0;

var a := -1;

while (e[c] <> nil) do {

if (e[c].id = s) a := e[c].val;

c := c + 1

};

return a

}

}

PSU CS321 F’10 LECTURE 15 c© 1992–2010 ANDREW TOLMACH 20



INTERFACE VS. IMPLEMENTATION

Ideally, the client of an ADT is not supposed to know or care about its
internal implementation details – only about its exported interface.
Thus, it makes sense to separate the textual description of the interface
from that of the implementation, e.g., into separate files.

• Specifications give the names of types, and the names and types of
functions in the package.

• Bodies give the definitions of the types and functions mentioned in the
specification, and possibly additional private definitions.

One advantage of this separation is that clients of module X can be
compiled on the basis of the information in the specification of X, without
needing access to the the body of X (which might not even exist yet!)

But many languages, particularly in the C/C++ tradition, don’t make this
separation very cleanly.

PSU CS321 F’10 LECTURE 15 c© 1992–2010 ANDREW TOLMACH 21



IS ABSTRACTION ALWAYS DESIRABLE?

Although the idea of defining explicitly all the operators for a type makes
good logical sense, it can get quite inconvenient.

Programmers are used to assigning values or passing them as
arguments without worrying about their types. They may also expect to
be able to compare them, at least for equality, without regard to type.

So most languages that support ADT’s have built-in support for these
basic operations, defined in a uniform way across all types – and
sometimes also mechanisms for programmers to customize these.

But it is impossible for clients to generate code for operations that move
or compare data without knowing the size and layout of the data. And
these are characteristics of the type’s implementation, not its interface.
So these “universal” operations break the abstraction barrier around type
and preventing separate compilation.

A common fix is to treat all abstract values as fixed-size pointers to
heap-allocated values.

PSU CS321 F’10 LECTURE 15 c© 1992–2010 ANDREW TOLMACH 22



MODULES IN GENERAL

An ADT is one particular kind of module, containing:

• a single abstract type, with its representation;

• a collection of operators, with their implementations.

Instances of the ADT are typically created dynamically, and contain
space for the components of the representation; all the instances share
the same operator code.

More generally, modules might contain:

• multiple type definitions;

• arbitrary collections of functions (not necessarily abstract operators on
the type);

• variables; • constants; • exceptions; etc.

Primary purpose is to divide large programs into (somewhat)
independent sections, offering separate namespaces and perhaps
separate compilation.

PSU CS321 F’10 LECTURE 15 c© 1992–2010 ANDREW TOLMACH 23



INTERFACES

Even when a module does not represent a particular abstract data type, it
usually represents a kind of abstraction over some set of facilities, in
which some implementation information will be hidden behind an
interface.

Clients of a module want to know what module does, not how it does it.
Of course, specifying “what” is a hard problem! A key goal is that it
should be possible to change the implementation without rewriting (or
ideally, even recompiling) the client code that depends on the interface.

Most languages use type information to give a partial characterization of
what a module does. An interface definition is then a collection of
identifiers with their types.

In many languages it is possible to write and compile client code based
solely on type interfaces. Of course, there must also be an (at least
informal) specification of what the module’s facilities do, and few
languages provide any support for making sure that the implementations
adhere to more than a type specification.

PSU CS321 F’10 LECTURE 15 c© 1992–2010 ANDREW TOLMACH 24


