
CS321 Languages and Compiler Design I
Fall 2010

Lecture 12

1



MOTIVATING INHERITED ATTRIBUTES

Sometimes it’s convenient to make a node’s attributes dependent on
siblings or ancestors in tree.

Useful for expressing dependence on context, e.g., relating identifier
uses to declarations. (This is especially important because CF
grammar cannot capture such dependencies.)

Example: Simple C-like Variable Declarations

D →T L

T →int | real

L →L1,id | id

Parse tree for real a,b,c:

D

�
�

T

real

@
@

L

��

L
��

L

a

,
@@

b

,
@@

c

PSU CS321 F’10 LECTURE 12 c© 1992–2010 ANDREW TOLMACH 2



INHERITED ATTRIBUTE GRAMMAR

D →T L L.type := T.type

T →int T.type := integer

T →real T.type := real

L →L1,id { L1.type := L.type; addsymb(id.name, L.type) }

L →id addsymb(id.name, L.type)

Here addsymb adds id and its type to symbol table, and L.type is an
inherited attribute.

A parse tree showing dependency relations among attributes:
D

real

L.type := realT.type := real

L.type := real ’,’ id.name := c

L.type := real ’,’ id.name := b

id.name := a
PSU CS321 F’10 LECTURE 12 c© 1992–2010 ANDREW TOLMACH 3



ATTRIBUTE EVALUATION

Dependency arrows for a dependency graph; we must evaluate
attributes in topological order of dependency graph.

If attributes are defined on parse tree, may want to evaluate attributes
while (or instead of) building the tree. This is sometimes possible:

• Saw how to evaluate S-attributed grammar, in wich all attributes are
synthesized, during bottom-up parsing; this method doesn’t work for
inherited attributes.

• Top-down parser can easily evaluate L-attributed grammars, in which
attributes don’t depend on their right ancestors. (Bottom-up parsers can
sometimes handle these too, though with difficulty.) Example follows.

• For more complicated attribute grammars, might have to build some or
all of tree before evaluating attributes.

PSU CS321 F’10 LECTURE 12 c© 1992–2010 ANDREW TOLMACH 4



ATTRIBUTE EVALUATION DURING RECURSIVE DESCENT

Each non-terminal function now takes inherited attribute values as
arguments and return (record of) synthesized attribute value(s) as
result.

Example revisited (with left-recursion removed):
class Ty {};

static Ty intTy = new Ty(); static Ty realTy = new Ty();

void D() { Ty ty = T(); L(ty); }

Ty T() {

if (tok == INT) {

tok = lex(); return intTy;

} else if (tok == REAL) {

tok = lex(); return realTy;

} else error(); }

void L(Ty ty) {

if (tok == ID) {

addsymb(lexeme,ty); tok = lex();

} else error();

if (tok == ’,’) {

tok = lex(); L(ty);} }

PSU CS321 F’10 LECTURE 12 c© 1992–2010 ANDREW TOLMACH 5



AVOIDING INHERITED ATTRIBUTES

When using bottom-up parser (e.g., with yacc or CUP), it is desirable to
avoid inherited attributes.

There are several approaches:

• Move the activity requiring the attribute to a higher node in the tree, by
substituting a synthesized attribute for the inherited one, e.g.:

D →T L for each id in L.list

addsymb(id.name, T.type)

T →int T.type := integer

T →real T.type := real

L →L1,id L.list := append-list(id,L1.list)

L →id L.list := singleton-list(id)

PSU CS321 F’10 LECTURE 12 c© 1992–2010 ANDREW TOLMACH 6



AVOIDING INHERITED ATTRIBUTES (2)

• Can sometimes rewrite grammar, e.g.:

D →T id {D.type := T.type;

addsymb(id.name,T.type) }

D →D1 , id {D.type := D1.type;

addsymb(id.name,D.type) }

T →int T.type := integer

T →real T.type := real

PSU CS321 F’10 LECTURE 12 c© 1992–2010 ANDREW TOLMACH 7



ATTRIBUTES ON AST’S

Attribute grammar method extends to abstract grammars (not intended
for parsing), e.g., AST grammars.

• Same concept, but attribute evaluation always occurs after whole tree is
built.

• Can use recursive descent as an attribute evaluation technique
(regardless of how parsing was performed).

• Typical applications: typechecking, code generation, interpretation.

Why attribute grammars?

• Compact, convenient formalism.

• Local rules describe entire computation.

• Separate traversal from computation.

• (Purely functional rules can be evaluated in any order.)

PSU CS321 F’10 LECTURE 12 c© 1992–2010 ANDREW TOLMACH 8



CHECKING OF E LANGUAGE (HOMEWORK 1)

Can view checking process as evaluation of following attribute grammar,
where

• exp.ok and exps.ok are synthesized boolean attributes indicating
whether expression has checked successfully; and

• exp.env and exps.env are inherited environment attributes (with
operators empty, extend, and lookup) containing entries for all in-scope
variables.

PSU CS321 F’10 LECTURE 12 c© 1992–2010 ANDREW TOLMACH 9



program → exp exp.env := empty

exp → ID exp.ok := lookup(exp.env,ID.name)

→ NUM exp.ok := true

→ exp1 ’+’ exp2 { exp1.env := exp2.env = exp.env;

exp.ok := exp1.ok AND exp2.ok }

→ exp1 ’-’ exp2 { exp1.env := exp2.env = exp.env;

exp.ok := exp1.ok AND exp2.ok }

→ ID ’=’ exp1 { exp1.env := exp.env;

exp.ok := lookup(exp.env,ID.name) AND exp1.ok }

→ if0 exp1 exp2 exp3

{ exp1.env := exp2.env := exp3.env := exp.env;

exp.ok := exp1.ok AND exp2.ok AND exp3.ok }

→ ’{’ vars ’;’ exps ’}’ { exps.env := extend(exp.env,vars);

exp.ok := exps.ok }

exps → exp { exp.env := exps.env;

exps.ok := exp.ok }

→ exp ’;’ exps1 { exp.env := exps1.env := exps.env;

exps.ok := exp.ok AND exps1.ok }
PSU CS321 F’10 LECTURE 12 c© 1992–2010 ANDREW TOLMACH 10


