
CS 321 Homework 3 – due 4:30pm, Wednesday, November 17, 2010

This homework specification is copyright 2010 by Andrew Tolmach. All rights reserved.

Parsing

Write a parser for the completefab language. The defining grammar forfab is in Section 13 of the
Language Reference Manual; a copy is also available on the web page in the fileconcrete.txt.
Use this grammar as a guideline for writing your parser.

Your parser must be implemented using theCUP parser generator to produce aParser class. The
generated parser will use the lexical analyzer from homework 2 (either your own or the reference
version provided) to obtain a sequence ofSymbol objects representing the tokens of a supposed
fab program. If the token stream represents a syntactically legal program, your parser should
generate the corresponding abstract syntax tree; otherwise, it should throw an appropriate instance
of theParseError exception. The provided fileParserDriver illustrates how theParser
class can be used (and how it will be tested for grading this homework).

The provided fileAst.java defines classes for representing the various kinds of nodes in ab-
stract syntax trees forfab programs. (These classes are defined as inner classes of classAst; this
is just a convenient way to define a large number of classes in asingle file.) You must build ap-
propriate trees of AST nodes for all syntactically legalfab programs. More precisely, your parser
should produce exactly the same AST as the reference parser provided in filesParser.class,
CUP$Parser$actions.class, andSymKinds.class; more details about this are given
below. ThetoString() methods defined on all AST node classes can be used to obtain a read-
able, printable representation of the AST in a standardizedformat, suitable for making comparisons
between parser implementations. For syntactically invalid fab programs, your parser must raise
an exception on the first syntax error discovered; it should not attempt error recovery. The text
associated with your parser’s exceptions need not match thereference parser exactly.

The “correct” form of the parser’s output, i.e., the correctmapping from concrete to abstract syntax,
is defined by the behavior of the reference parser. In most cases, this behavior should be obvious;
here are a few noteworthy points:

1. The AST is capable of describing programs that are not type-correct; type-checking will be
done in a later homework.

2. To help make error messages from such a type-checker meaningful, each AST node contains
a line field; this should be the source line number associated with the construct. For
constructs spanning several lines, the line number containing thefirst token should be used.

3. A null object is permitted in only four places in the AST: in thesuper name field
of a RecordTypeDec (when noextends clause is given), in thetypeExp field of a
VarDec (when no type is specified), in theresultType field of aFuncDec (when no
result type is specified), and in thereturnValue field of a ReturnSt (for RETURN
statements that do not return a value).

1

4. Expandelsif clauses into nestedIfSt structures in the AST. If theelse branch is miss-
ing from anif, use aBlockSt containing aBlock with an empty statement list.

5. The grammar for statements is ambiguous because of possible “dangling”else clauses; the
correct disambiguation is described in the Language Reference Manual, Section 12.6.

6. If theby clause in afor statement is omitted, supply 1 in the AST.

7. If the count expression is omitted in an array initializer, supply 1 in the AST.

8. The correct precedence and associativity for operators is specified in the Language Reference
Manual, Section 11.8.

9. The predefined constants (true, false, andnil) should be parsed as if they were vari-
ables.

Your error messages need not match the reference version exactly, but at a minimum they should
indicate the nature of the error and reflect the approximate source line number at which the error
occurred.

Implementation and Program Submission

You must use theCUP parser generator to implement your parser.CUP can be downloaded from
http://www2.cs.tum.edu/projects/cup/; you want the JAR file labeledCUP 11a
beta 20060608.

To run CUP in conjunction with theYylex class we developed in homework 2, compile your cup
specification file as follows:

java -classpath java-cup-11a.jar java_cup.Main \
-parser Parser -symbols SymKinds -interface < fab.cup

Use the newly provided version ofSymbol.java, which is designed to work with CUP, instead
of the version provided in homework 2. Your CUP specificationmust define the same symbol
kinds as were used in homework 2; this is already done for you in fab0.cup, which also shows
how to specify a small subset of thefab grammar. It is permitted to include code fromfab0.cup
in your submitted solution.

Your parsermustgenerate an AST structure using the constructors defined inAst.java. Note
that for each node type that takes a sequence of children, there is a variant constructor that allows
these children to be specified as aList, rather than as an array; this simplifies parsing, where the
length of the seqeunce is not known ahead of time.

You should submit a single filefab.cup containing yourCUP specification. (Remember, if you
need to define any additional auxiliary classes, you can put them at the top of yourCUP file.) We
will process your CUP file using CUP option settings specifiedabove, producingParser.java
andSymKinds.java. These will be combined with the provided files, including the CUP-
specific version ofSymbol.java.

2

Your file should be submitted as a plain text attachment to a mail message sent to
cs321-03@cecs.pdx.edu. The subject line of your mail should include your name and the
string “HW3”. Your code must work correctly with the providedParserDriver, Scanner,
Ast, ParseError classes, the CUP-specific version of theSymbol class, and with the refer-
ence version ofYylex.class from homework 2. You maynot modify these classes, and you
should not submit any code for them. We will process your submission by creating a fresh direc-
tory, copy injava-cup-11a.jar, the providedParserDriver.java, Scanner.java,
Ast.java, ParseError.java, Symbol.java, andYylex.class files, and saving your
attachment. We will then execute

java -classpath java-cup-11a.jar java_cup.Main \
-parser Parser -symbols SymKinds -interface < fab.cup

javac -classpath .:java-cup-11a.jar Parser.java \
ParserDriver.java Scanner.java Ast.java \
ParseError.java Symbol.java

To test the resulting program on afab file foo.fab, we should be able to type

java -classpath .:java-cup-11a.jar ParserDriver < foo.fab

Note that we will be using automated mechanisms to read, compile, and test your programs, so
adherence to this naming and mailing policy is important! Asusual, you may lose points if you
fail to submit your program in the correct way.

3

