CS 321 Homework 3 — due 4:30pm, Wednesday, November 17, 2010
This homework specification is copyright 2010 by Andrew Tati. All rights reserved.

Parsing

Write a parser for the completab language. The defining grammar fab is in Section 13 of the
Language Reference Manual; a copy is also available on thepage in the fileoncr et e. t xt .
Use this grammar as a guideline for writing your parser.

Your parser must be implemented using @u° parser generator to produc®ar ser class. The
generated parser will use the lexical analyzer from homk&deither your own or the reference
version provided) to obtain a sequenceSyitbol objects representing the tokens of a supposed
fab program. If the token stream represents a syntacticallgl Ipgpgram, your parser should
generate the corresponding abstract syntax tree; otherivehould throw an appropriate instance
of thePar seEr r or exception. The provided filBar ser Dri ver illustrates how théar ser
class can be used (and how it will be tested for grading thisdwveork).

The provided fileAst . j ava defines classes for representing the various kinds of nadab-i
stract syntax trees fdab programs. (These classes are defined as inner classesAstgghis

is just a convenient way to define a large number of classesingde file.) You must build ap-
propriate trees of AST nodes for all syntactically lefgdd programs. More precisely, your parser
should produce exactly the same AST as the reference pameded in filesPar ser . cl ass,
CUPS$Par ser $act i ons. cl ass, andSynKi nds. cl ass; more details about this are given
below. Thet oSt ri ng() methods defined on all AST node classes can be used to obedala r
able, printable representation of the AST in a standardmedat, suitable for making comparisons
between parser implementations. For syntactically iov@b programs, your parser must raise
an exception on the first syntax error discovered; it shooldattempt error recovery. The text
associated with your parser’s exceptions need not matatetbeence parser exactly.

The “correct” form of the parser’s output, i.e., the corn@epping from concrete to abstract syntax,
is defined by the behavior of the reference parser. In mossc#sis behavior should be obvious;
here are a few noteworthy points:

1. The AST is capable of describing programs that are nottgpeect; type-checking will be
done in a later homework.

2. To help make error messages from such a type-checker ngdalieach AST node contains
al i ne field; this should be the source line number associated wighconstruct. For
constructs spanning several lines, the line number cantathefirst token should be used.

3. A null object is permitted in only four places in the AST: in teeper _nane field
of aRecor dTypeDec (when noext ends clause is given), in theypeExp field of a
Var Dec (when no type is specified), in theesul t Type field of aFuncDec (when no
result type is specified), and in theet ur nval ue field of aRet ur nSt (for RETURN
statements that do not return a value).

N

. Expancel si f clauses into nestdd St structures in the AST. If thel se branch is miss-
ing from ani f , use aBl ockSt containing aBl ock with an empty statement list.

5. The grammar for statements is ambiguous because of p5iamgling”el se clauses; the
correct disambiguation is described in the Language Reder&anual, Section 12.6.

6. If theby clause in & or statement is omitted, supply 1 in the AST.
7. If the count expression is omitted in an array initialjzempply 1 in the AST.

8. The correct precedence and associativity for opera@sdcified in the Language Reference
Manual, Section 11.8.

9. The predefined constantsr(ue, f al se, andni |) should be parsed as if they were vari-
ables.

Your error messages need not match the reference versiotiyexat at a minimum they should
indicate the nature of the error and reflect the approximatiece line number at which the error
occurred.

Implementation and Program Submission

You must use th€UP parser generator to implement your par<gdP can be downloaded from
http://ww2. cs. tum edu/ proj ect s/ cup/; you want the JAR file labele@UP 11la
bet a 20060608.

To run CUP in conjunction with th¥y| ex class we developed in homework 2, compile your cup
specification file as follows:

java -cl asspath java-cup-1la.jar java_cup.Main \
-parser Parser -synbols SynKinds -interface < fab.cup

Use the newly provided version &y nbol . j ava, which is designed to work with CUP, instead
of the version provided in homework 2. Your CUP specificatioust define the same symbol
kinds as were used in homework 2; this is already done for géw@ab0. cup, which also shows
how to specify a small subset of theb grammar. It is permitted to include code frdrab0. cup

in your submitted solution.

Your parsemustgenerate an AST structure using the constructors definddtin j ava. Note

that for each node type that takes a sequence of childrem, iha variant constructor that allows
these children to be specified akiast , rather than as an array; this simplifies parsing, where the
length of the segeunce is not known ahead of time.

You should submit a single fittab. cup containing youiCUP specification. (Remember, if you
need to define any additional auxiliary classes, you canhmmtat the top of you€UP file.) We
will process your CUP file using CUP option settings speciéibdve, producingar ser . j ava
and SynKi nds. j ava. These will be combined with the provided files, including t6UP-
specific version oBynbol . j ava.

Your file should be submitted as a plain text attachment to al mmeessage sent to
cs321- 03@ecs. pdx. edu. The subject line of your mail should include your name arel th
string “HV\B”. Your code must work correctly with the providdehr ser Dri ver, Scanner,
Ast , Par seEr r or classes, the CUP-specific version of Byenbol class, and with the refer-
ence version offyl ex. cl ass from homework 2. You mayot modify these classes, and you
should not submit any code for them. We will process your sabion by creating a fresh direc-
tory, copy inj ava- cup- 11a. j ar, the providedPar ser Dri ver. j ava, Scanner. j ava,
Ast . j ava, ParseError.java, Synbol . j ava, andYyl ex. cl ass files, and saving your
attachment. We will then execute

java -cl asspath java-cup-1la.jar java_cup.Main \
-parser Parser -synbols SynKinds -interface < fab.cup
javac -classpath .:java-cup-1la.jar Parser.java \
ParserDriver.java Scanner.java Ast.java \
ParseError.java Synbol .| ava

To test the resulting program orfab file f 0o. f ab, we should be able to type
java -classpath .:java-cup-1la.jar ParserDriver < foo.fab
Note that we will be using automated mechanisms to read, dteygnd test your programs, so

adherence to this naming and mailing policy is important! ussal, you may lose points if you
fail to submit your program in the correct way.

