
Thefab Programming Language
Reference Manual

c© 2010 Andrew Tolmach
Dept. of Computer Science
Portland State University

(version of November 26, 2010)

1 Introduction

Thefab language is a small imperative programming language with first class functions, extensible record values with
implicit pointers, arrays, integer and real variables, anda few simple structured control constructs. It bears many
similarities to an earlier language, PCAT, designed by Andrew Tolmach and Jingke Li.

This manual gives an informal specification for the language. Fragments of EBNF syntax are introduced at relevant
points in the text; the complete grammar is given in Section 13.

2 Lexical Issues

fab’s character set is the standard 7-bit ASCII set.fab is case sensitive; upper and lower-case letters arenotconsidered
equivalent.

Whitespace (blank, tab or newline characters) serves to separate tokens; otherwise it is ignored. Whitespace is
needed between two adjacent keywords or identifiers, or between a keyword or identifier and a number. However, no
whitespace is required between a number and a keyword, sincethis causes no ambiguity. Delimiters and operators
don’t need whitespace to separate them from their neighborson either side. Whitespace may not appear in any token
except a string (see below).

Commentsare enclosed in the pair[* and*]; they cannot be nested. Any character is legal in a comment. Of
course, the first occurrence of the sequence of characters*] will terminate the comment. Comments may appear
anywhere a token may appear; they are self-delimiting, i.e., they do not need to be separated from their surroundings
by whitespace.

2.1 Tokens

Tokens consist of keywords, literal constants, identifiers, operators, and delimiters.
The following are reservedkeywords.

and by div do else elsif
exit extends for func if loop
mod not of or read record
return then to var while write

Literal constants are either integer, real, or string.Integers(denotedINTEGER in the grammar) contain only digits;
they must be in the range 0 to231 − 1. Reals(denotedREAL in the grammar) consist of one or more digits, followed
by a decimal point, followed by zero or more digits. There is no specific range constraint on reals, but the literal as a
whole is limited to 255 characters in length. Note that no numeric literal can be negative, since there is no provision
for a minus sign.Strings(denotedSTRING in the grammar) begin and end with a double quote (") and contain any
sequence of printable ASCII characters (i.e., having decimal character codes in the range 32 – 126) except double

1

quote. Note in particular that strings may not contain tabs or newlines. String literals are limited to 255 characters in
length, not including the delimiting double quotes.

Identifiers(denotedID in the grammar) are strings of letters and digits starting with a letter, excluding the reserved
keywords. Identifiers are limited to 255 characters in length.

The following are theoperators:

@ -> := + - * / < <= > >= = <>

and thedelimiters:

: ; , . () [] { }

For clarity, these are written within single quotes in the grammar.

3 Programs

program → {recordtype-decl} block

A program is the unit of compilation forfab. It consists of (optional) record type declarations and atop-level
block. It is executed by executing its top-level block and then terminating.

Each file read by the compiler must consist of exactly one program. There is no facility for linking multiple
programs or for separate compilation of parts of a program.

4 Blocks
block → ’{’ block-items ’}’
block-items → [block-item{’;’ block-item}]
block-item → declaration| statement

A block is a sequence of declarations and statements, which may be freely intermixed. It is executed by elaborating
each declaration and executing each statement in order.

5 Declarations

All identifiers occurring in a program must be introduced by adeclaration, except for a small set of pre-defined
identifiers:real, integer, boolean, unit, true, false (see Section 6.2), andnil (see Section 6.5). Each
declaration serves to specify whether the declared identifier represents a type, a variable, or a function (all of which
live in a singlename space) or a record component name (which live in separate name spaces; see Section 6.5).

The only kind of types that can be declared are record types. Record type declarations occur at the beginning of
the program, are mutually recursive, and are in scope throughout the program. Description of their syntax is defered
to Section 6.5.

Variable and function declarations are local to a block and all its sub-blocks. Global declarations are simply those
that appear in the top-level block.

declaration → var-decl| funcs-decl

Thescopeof a declaration extends roughly from the point of declaration to the end of the enclosing block. The
exact scope rules depend on the kind of declaration (see Sections 8 and 9). A declaration of an identifier within a nested
functionhidesany declarations in outer functions and makes them inaccessible in the scope of the inner declaration.
No identifier may be declared twice in the same function. The built-in identifiers may not be redeclared anywhere in
the program. An identifier declared as a record type name may not be redeclared anywhere in the program.

Declaration elaboration can have computational side-effects, so the order of declarations and statements matters
even when scope is not an issue.

2

6 Types

fab is a strongly-typed language; every expression has a uniquetype, and types must match at assignments, calls, etc.
There is a simple notion of subtyping based on records extensions (see Section 6.5) and for the numeric types (see
Section 6.2).

The built-inbasic types(see Section 6.2) and declared record types are refered to bytype names. New record types
are created byrecord type declarations(see Section 6.5). Function and array types cannot be named;they are always
created “on the fly” by applying the type constructors-> and@, respectively, to existing types.

fab uses amixedequivalence model for types. For records,nameequivalence is used: each record type declaration
produces a new, unique type, incompatible with all the others (except possibly for subtyping). For functions and array,
structuralequivalence is used: two types are equivalent if they resultby applying the same constructor to equivalent
types (again, with possible subtyping).

6.1 Type Expressions

type-expr → ID
→ ’@’ type-expr
→ type-args ’->’ type-expr
→ ’(’ type-expr ’)’

type-args → ’(’ ’)’
→ type-expr
→ ’(’ type-expr{’,’ type-expr} ’)’

The function type constructor (->) is right-associative and has lower precedence than the array constructor (@).
Parentheses may be used in type expressions to alter associativity or to improve readability.

6.2 Built-in Types

There are fourbuilt-in basic types:integer, real, boolean, andunit. Integer literal constants all have type
integer, real literal constants all have typereal, and the built-in valuestrue andfalse have typeboolean.
The typeunit is used to specify the return type of functions that don’t return a useful value (similar tovoid in
C/C++/Java); its (sole) value cannot be denoted in programs.

integer andreal collectively form thenumerictypes. Aninteger value will always be implicitlycoerced
to areal value if necessary. The boolean type has no relation to the numeric types, and a boolean value cannot be
converted to or from a numeric value.

6.3 Array Types

An array is a structure consisting of zero or more elements ofthe sameelement type. An array type is written as@
followed by an expression for the element type. The elementsof an array can be accessed bydereferencingusing an
index, which ranges from 0 to the length of the array minus 1. The length of an array is not fixed by its type, but is
determined when the array is created at runtime. It is a checked runtime error to dereference outside the bounds of an
array.

6.4 Function Types

Function types, written with an-> constructor, describe functions taking zero or more parameters and returning a
result (possiblyunit). Normally, the parameter types are written as a comma-separated list within parentheses; the
parentheses may be omitted when there is exactly one parameter. The body of a function is a block.

Functions are fully first-class infab; that is, in addition to being called, they can also be storedin variables, arrays
or records, or returned as the result of other functions. Function declarations can appear at any level of block nesting,
and their bodies can freely dereference local variables andfunctions of enclosing blocks. However, the body of a
nested function can onlyupdatevariables declared within the function’s own block or in thetop-level block.

3

6.5 Record Types

A record type is a structure consisting of a fixed number ofcomponentsof (possibly) different types. Unlike the other
types, record types must be declared by name before they can be used.

recordtype-decl → record ID [extends ID] ’{’ [ids-and-types] ’}’ ’ ;’
ids-and-types → id-and-type{’,’ id-and-type}
id-and-type → ID ’:’ type-expr

The record type declaration specifies the name of the record type, an optional named super-type that this record
type extends, and the name and type of each component. Component names are used to initialize and dereference
components; the components for each record type form a separate namespace, so different record types may reuse the
same component names. Component names must be unique withineach record type.

The special built-in valuenil belongs to every record type. It is a checked runtime error todereference a compo-
nent from the nil record.

All record types are potentially mutually recursive; that is, all record type names are in scope to define all compo-
nents of all records. Note the utility of thenil record for building values of recursive types.

A record type declaration can optionallyextendanother record type, called itssuper-type. In this case, the present
type contains all the components of the super-typein addition tothe components listed. If the super-type is itself an
extension,its super-type components are included as well, and so forth. Component names must be unique across the
entire set of components. For example, given the declarations

record T{a:int}
record U extends T {b:bool}

records of typeT contain a single componenta:int and records of typeU contain two componentsa:int and
b:bool. No chain of super-types may contain a cycle.

An extended type is automatically coerced to its super-type(or the super-type of its super-type, and so on) whenever
this is demanded by the context in which it is used. This makessense because the context that wants a super-type can
just ignore the additional fields defined by the extension. But this coercion only works when one record type is
explicitly declared as the extension of another, not merelywhen one type has a superset of another’s components.
Given the declaration

record W {a:int,b:bool}

records ofW contain the same components as those of typeU, but they are not automically coerced to typeT.

6.6 Subtyping

Type equivalence checks are performed “up to subtyping” so that a subtype can always be used in place of a supertype.
Subtyping is transitive: ift is a subtype ofu andu is a subtype ofw, thent is a subtype ofw.

The two basic forms of subtyping have already been described: integers can be treated as reals, and the value of
an extended record type can be treated as having its super-type. Record subtyping isnominal: one record type is a
subtype of another only when it is explicitly declared as an extension.

For functions,fab uses astructuralsubtyping rule, as follows: a function type(t1,...,tn) -> t is a subtype
of (u1,...,un) -> u if u is a subtype oft andti is a subtype ofui for eachi ≤ n. Note that the subtyping
relation iscovarianton the result type butcontravarianton the parameter types.

Each array types has only itself as a (trivial) subtype. So the array type@t is a subtype of@u only if t = u; in
particular, it is not sufficient fort to be a subtype (or supertype) ofu.

6.7 Constructed Type Values

Arrays and records are always manipulated by value, so a value of an array or record type is “really” a pointer to a
heap object containing the array or record, though this pointer cannot be directly manipulated by the programmer.
Thus, a record type that appears to contain other record types as components actually contains pointers to these types.
In particular, a record type may contain (a pointer to) itself as a component, i.e., it may be recursive.

Similarly, values of function types are also represented asheap objects, calledclosures(see Section 9).

4

Records, arrays, and closures have unlimited lifetimes; the heap object containing one of them exists from the
moment when its defining expression or declaration is evaluated (see Sections 11.6 11.7, and 9) until the end of the
program. In principle, a garbage collector could be used to remove heap objects when no more pointers to them exist,
but this would be invisible to thefab programmer.

7 Constants

There are threebuilt-in constantvalues:true andfalse of typeboolean, andnil, which belongs to every record
type. There is no provision for user-defined constants.

8 Variables

var-decl → var ID [’:’ type-expr] ’:=’ expression

Every variable must have an initial value, given byexpression. The type declaration can be omitted whenever
the type can be deduced from the initial value (which is always possible except when the initial value isnil).

A var declaration is elaborated by evaluating the initializing expression and storing the resulting value into the
specified variable.

The scope of each declared variable begins just after the declaration; it doesnot include the variable’s own initial-
izing expression, so declarations are never recursive.

9 Functions
funcs-decl → func func-decl{and func-decl}
func-decl → ID ’(’ [ids-and-types] ’)’ [’->’ type-expr] block
ids-and-types → id-and-type{’,’ id-and-type}
id-and-type → ID ’:’ type-expr

Functions may or may not explicitly return a value. If they donot, they are considered to have return typeunit;
in this case, the return type can be omitted altogether from the function declaration. Functions returningunit can
only be a invoked by the execution of a callstatement; those that return a non-unit value can only be invoked by
evaluating a callexpressionand their return value becomes the value of the call expression.

A function have zero or moreformal parameters, whose names and types are specified in the function declaration,
and whose actual values are specified when the function is activated. The scope of formal parameters is the function
block. All parameter names must be distinct. Parameters arealways passed by value.

The body of a function is a block. A function is activated by binding the formal parameters to the actual argument
values, executing the function’s defining block, and finallyreturning to the calling function. There is an implicit
return statement at the bottom of every function body.

Each set of functions declared following a singlefunc keyword (and separated byand keywords) is treated as
(potentially) mutually recursive; that is, the scope of each function name begins at the point of declaration of the first
function in the set, and includes the bodies of all the functions in the set as well as the remainder of the enclosing
block.

Elaboration of a function declaration causes creation of aclosureobject on the heap, which contains a pointer to
the function’s code together with thecurrent valuesof any variables dereferenced in the function body that are declared
in outer enclosing blocks other than the top level. Storing the value of each non-local variable in the closure allows a
function body to access it even after the activation of the outer block where it was declared has terminated. However,
because the values in the closure are only copies, it does notmake sense to update them, so this is prohibited. The
need to store values in closures and the restriction on update do not apply to top-level variables, since these are active
for the entire duration of the program.

A fab implementation may perform optimizations to avoid constructing closure objects in some circumstances,
but such optimizations will not be visible to thefab programmer.

5

10 L-values

An l-valueis a location whose value can be either read or assigned. Variables, function parameters, record components,
and array elements are all l-values.

lvalue → ID
→ lvalue ’[’ expression ’]’
→ lvalue ’.’ ID

The square brackets notation ([]) denotes array element dereferencing; the expression within the brackets must
evaluate to an integer expression within the bounds of the array.

The dot notation (.) denotes record component dereferencing; the identifier after the dot must be a component
name within the record.

11 Expressions

11.1 Simple expressions

expression → number
→ lvalue
→ ’(’ expression ’)’

number → INTEGER | REAL

A number expression evaluates to the literal value specified. Note that reals are distinguished from integers by
lexical criteria (see Section 2). An l-value expression evaluates to the current contents of the specified location.
Parentheses can be used to alter precedence in the usual way.

11.2 Arithmetic operators

expression → unary-op expression
→ expression binary-op expression

unary-op → ’-’
binary-op → ’+’ | ’-’ | ’*’ | ’/’ | div | mod

Operators+,-,* require integer or real arguments. If both arguments are integers, an integer operation is per-
formed and the integer result is returned; otherwise, any integer arguments are coerced to reals, a real operation is
performed, and the real result is returned. Operator/ requires integer or real arguments, coerces any integer argu-
ments to reals, performs a real division, and always returnsa real result. Operatorsdiv (integer quotient) andmod
(integer remainder) take integer arguments and return an integer result. All the binary operators evaluate their left
argument first.

11.3 Logical operators

expression → unary-op expression
→ expression binary-op expression

unary-op → not
binary-op → or | and

These operators require boolean operands and return a boolean result.or andand are “short-circuit” operators;
they do not evaluate the right-hand operand if the result is determined by the left-hand one.

11.4 Relational operators

expression → expression binary-op expression
binary-op → ’>’ | ’<’ | ’=’ | ’>=’ | ’<=’ | ’<>’

These operators all return a boolean result. These operators all work on numeric arguments; if both arguments
are integer, an integer comparison is made; otherwise, any integer argument is coerced to real and a real comparison

6

is made. Operators= and<> also work on pairs of boolean arguments, or pairs of record orarray arguments of the
same type; for the latter, they test “pointer” equality (that is, whether two records or arrays are the same instance, not
whether they have the same contents). These operators all evaluate their left argument first.

11.5 Function call
expression → expression ’(’ expressions ’)’
expressions → [expression{’,’ expression}]

This expression is evaluated by evaluating the operator expression to obtain the function closure value, and then the
argument expressions left-to-right to obtain actual parameter values, and finally executing the function with its formal
parameters bound to the actual parameter values. The function returns by executing an explicitreturn statement
(with an expression for the value to be returned), so the return type must not beunit. The returned value becomes
the value of the function call expression.

11.6 Record construction
expression → ID ’{’ [comp-inits] ’}’
comp-inits → comp-init{’,’ comp-init}
comp-init → ID ’:=’ expression

If typenameis a record type name, thentypename{id1:=exp1,id2:=exp2,. . .} evaluates each expression left-
to-right, and then creates a new record instance of typetypenamewith named components initialized to the resulting
values. The names and types of the component initializers must match those of the named type (including any com-
ponents inherited from a super-type), though they need not be in the same order.

11.7 Array construction

expression → ’@’ type-expr ’{’ [array-inits] ’}’
array-inits → array-init { ’,’ array-init}
array-init → [expressionof] expression

The expression@texpr {exprn

1
of exprv

1
, exprn

2
of exprv

2
,. . .} evaluates each pair of expressions in left-

to-right order to yield a list of pairs of integer countsni and initial valuesvi, and then creates a new array instance with
elements of typetexprwhose contents consist ofn1 copies ofv1, followed byn2 copies ofv2, etc. If any of the counts
is 1, it may be omitted. For example, the specification@integer{1,2 of 3,3 of 2,4} yields an integer array
of length 7 with contents1,3,3,2,2,2,4. If any of theni is less than 1, no copies of the correspondingvi are
included. The types of thevi must matchtexpr.

11.8 Precedence and associativity

Function call and parenthesization have the highest (most binding) precedence; followed by unary-; followed by*,
/, mod, anddiv; followed by+ and-; followed by the relational operators; followed bynot; followed byand;
followed byor.

The binary arithmetic and logical operators are all left-associative. The relational operators are non-associative;in
other words, an expression such asa = b = c is illegal, although one such as(a = b) = c is legal (presuming
c has typeboolean.

12 Statements

12.1 Block

statement → block

A block may be introduced at any point where a statement is expected.

7

12.2 Assignment

statement → lvalue ’:=’ expression

The l-value is evaluated to a location; then the expression is evaluated and its value is stored in the location.
Assigning a record or array value actually assigns a pointerto the record or array.

12.3 Function Call
statement → expression ’(’ expressions ’)’
expressions → [expression{’,’ expression}]

This statement is executed by evaluating the operator expression to obtain the function closure value, and then the
argument expressions left-to-right to obtain actual parameter values, and finally executing the function with its formal
parameters bound to the actual parameter values. The function must have return typeunit. The function returns
when its final statement or an explicitreturn statement (with no expression) is executed.

12.4 Read

statement → read ’(’ lvalue {’,’ lvalue} ’)’

This statement is executed by evaluating the l-values to locations in left-to-right order, and then reading numeric
literals from standard input, evaluating them, and assigning the resulting values into the locations. The l-values must
have type integer or real, and their types guide the evaluation of the corresponding literals. Input literals are delimited
by whitespace, and the last one must be followed by a carriagereturn.

12.5 Write
statement → write ’(’ write-params ’)’
write-params → [write-expr{’,’ write-expr}]
write-expr → STRING | expression

Executing this statement evaluates the specified expressions (which must evaluate to integers, reals, booleans, or
string literals) in left-to-right order, and then writes the resulting values to standard output (with no separation between
values), followed by a newline.

12.6 If-then-else
statement → if expressionthen statement

{elsif expressionthen statement}
[else statement]

This statement specifies the conditional execution of guarded statements. The expression preceding a statement
sequence, which must evaluate to a boolean, is called itsguard. The guards are evaluated in left-to-right order, until
one evaluates totrue, after which its associated statement sequence is executed. If no guard is satisfied, the statement
sequence following theelse (if any) is executed.

In cases of ambiguity, anelse or elsif is always attached to the nearest previousif statement.

12.7 While

statement → while expressiondo statement

The inner statement is repeatedly executed as long as the expression evaluates totrue, or until anexit from the
loop (see Section 12.10).

8

12.8 Loop

statement → loop statement

The inner statement is repeatedly executed until anexit occurs (see Section 12.10).

12.9 For
statement → for ID ’:=’ expressionto expression[by expression]

do statement

Executing the statementfor id := exp1 to exp2 by exp3 do st is equivalent to the following steps: (i)
evaluate expressionsexp1, exp2, andexp3 in that order to valuesv1, v2, v3 (which must be integers); (ii) if the value
of id is less than or equal tov2, executest; otherwise terminate the loop. (iii) setid := id + v3 and repeat step (ii).

If the by clause is omitted,v3 is taken to be 1.
The loop indexid is an ordinary integer variable; it must be declared in the scope containing the’for’ statement,

and it can be inspected or set above, within, or below the loopbody.
The normal execution of the loop can be interrupted early by an exit statement (see Section 12.10).

12.10 Exit

statement → exit

Executingexit causes control to pass immediately to the next statement following thenearestenclosingwhile,
loop or for statement. If there is no such enclosing statement, theexit is illegal.

12.11 Return

statement → return [expression]

Executingreturn terminates execution of the current function and returns control to the calling context. There
can be multiplereturns within one function body, and there is an implicitreturn at the bottom of every function.
A return from a function with return type other thanunitmust have a return value expression of the return type; a
return from a function with return typeunit must not. The top-level program block must not include areturn.

9

13 Complete Concrete Syntax

program → {recordtype-decl} block
recordtype-decl → record ID [extends ID] ’{’ [ids-and-types] ’}’ ’ ;’
ids-and-types → id-and-type{’,’ id-and-type}
id-and-type → ID ’:’ type-expr
block → ’{’ block-items ’}’
block-items → [block-item{’;’ block-item}]
block-item → declaration| statement
declaration → var-decl| funcs-decl
var-decl → var ID [’:’ type-expr] ’:=’ expression
funcs-decl → func func-decl{and func-decl}
func-decl → ID ’(’ [ids-and-types] ’)’ [’->’ type-expr] block
type-expr → ID

→ ’@’ type-expr
→ type-args ’->’ type-expr
→ ’(’ type-expr ’)’

type-args → ’(’ ’)’
→ type-expr
→ ’(’ type-expr{’,’ type-expr} ’)’

statement → lvalue ’:=’ expression
→ expression ’(’ expressions ’)’
→ read ’(’ lvalue {’,’ lvalue} ’)’
→ write ’(’ write-params ’)’
→ if expressionthen statement

{elsif expressionthen statement}
[else statement]

→ while expressiondo statement
→ loop statement
→ for ID ’:=’ expressionto expression[by expression]

do statement
→ exit
→ return [expression]
→ block

write-params → [write-expr{’,’ write-expr}]
write-expr → STRING | expression
expression → number

→ lvalue
→ ’(’ expression ’)’
→ unary-op expression
→ expression binary-op expression
→ expression ’(’ expressions ’)’
→ ID ’{’ [comp-inits] ’}’
→ ’@’ type-expr ’{’ [array-inits] ’}’

expressions → [expression{’,’ expression}]
lvalue → ID

→ lvalue ’[’ expression ’]’
→ lvalue ’.’ ID

comp-inits → comp-init{’,’ comp-init}
comp-init → ID ’:=’ expression
array-inits → array-init { ’,’ array-init}
array-init → [expressionof] expression
number → INTEGER | REAL
unary-op → ’-’ | not
binary-op → ’+’ | ’-’ | ’*’ | ’/’ | div | mod | or | and

→ ’>’ | ’<’ | ’=’ | ’>=’ | ’<=’ | ’<>’
10

