Syntax Analysis

Specify legal program formats using context-free grammar (CFG)

- Use Backus-Naur Form (BNF) as notation.
- Gives precise, readable specification.
- Many CFG’s have efficient parsers.
- Parser recognizes syntactically legal programs and rejects illegal ones.

Successful parse also captures hierarchical structure of programs (expressions, blocks, etc.).

- Convenient representation for further semantic checking (e.g., types) and for code generation.

We can use another program generator (e.g., yacc or CUP) to generate parser automatically from grammar.

Grammars

A Context-free Grammar is described by a set of productions (also called rewrite rules):

Examples:

\[
\begin{align*}
stmt & \rightarrow \text{if expr then stmt else stmt} \\
expr & \rightarrow \text{expr + expr | expr * expr} \\
& \quad | (\text{expr}) \quad | -\text{expr} \quad | \text{id}
\end{align*}
\]

Grammars contain terminals (≡ tokens) (e.g., id) and non-terminals (e.g., expr).

Grammars have a distinguished start symbol (ordinarily listed first, e.g., stmt).

The language generated by a grammar is the set of sentences (strings) of terminals that can be derived by repeated application of productions, beginning with start symbol.

- We write \(L(G) \) for the language generated by grammar \(G \).
Parse Trees

Graphical representation of a derivation.

Example tree for derivation of sentence \(-(id + id)\):

```
expr
  └── expr
     └── ( expr )
       └── expr + expr
            └── id + id
```

Each application of a production corresponds to an **internal** node, labeled with a **non-terminal.**

Leaves are labeled with **terminals.**

The derived sentence is found by reading leaves left-to-right.

Derivations

Can “linearize” a parse tree into a sequence of one-step derivations.

Example:

\[
expr \Rightarrow - expr \\
\quad \Rightarrow - (expr) \\
\quad \Rightarrow - (expr + expr) \\
\quad \Rightarrow - (id + expr) \\
\quad \Rightarrow - (id + id)
\]

or

\[
expr \Rightarrow - (id + id)
\]

Here \(\Rightarrow \) is read “derives” and \(\Rightarrow \) is read “derives in zero or more steps.”

This example gives a **leftmost derivation**, i.e., at each step, the leftmost non-terminal is replaced.

Can define **rightmost derivation** analogously:

\[
expr \Rightarrow ... \\
\quad \Rightarrow - (expr + expr) \\
\quad \Rightarrow - (expr + id) \\
\quad \Rightarrow - (id + id)
\]

Ambiguity

Every parse tree has a **unique** leftmost derivation and a unique **rightmost** derivation.

BUT a given sentence in \(L(G) \) can have more than one parse tree. Grammars \(G \) for which this is true are called **ambiguous**.

Example: with our grammar, the sentence

\[id + id * id \]

has two parse trees:

```
expr
  └── expr
     └── ( expr )
       └── expr + expr
            └── id + id
```

We may think of the left tree as being the “correct” one, but nothing in the grammar says this.

To avoid the problems of ambiguity, we can:

- Rewrite grammar
- Use “disambiguating rules” when we implement parser for grammar.

A classic ambiguity: the “dangling else”

Suppose we want `else` clauses to be optional in `if` statements. Here’s a possible grammar:

\[
stmt \rightarrow \text{if } expr \text{ then } stmt \\
\left| \right. \text{if } expr \text{ then } stmt \text{ else } stmt | ...
\]

But with this grammar the sentence

\[\text{if } E_1 \text{ then if } E_2 \text{ then } S_1 \text{ else } S_2 \]

has two possible parse trees:

```
stmt
  └── if
      └── expr
          └── if
               └── expr
                    └── stmt
```

Resolving Ambiguity by Rewriting Grammar

Usually want the first tree (else goes with most recent then), but grammar is ambiguous.

Solution: rewrite grammar using new non-terminals mst (“matched statement”) and ust (“unmatched statement”).

\[
\begin{align*}
mst & \rightarrow \text{mst} | \text{ust} \\
\text{ust} & \rightarrow \text{if} \ \text{expr} \ \text{then} \ \text{mst} \ \text{else} \ \text{mst} \\
\text{if} & \ \text{expr} \ \text{then} \ \text{stmt} \\
\text{stmt} & \rightarrow \text{expr} \ \text{mst} \ \text{else} \ \text{ust}
\end{align*}
\]

Now only one parse is possible. Assuming \(S_1, S_2\) are not unmatched if statements:

\[
\begin{align*}
\text{mst} & \\
\text{ust} & \\
\text{if} & \ \text{expr} \ \text{then} \ \text{stmt} \\
\text{stmt} & \rightarrow \text{mst} \ | \ \text{else} \ \text{ust}
\end{align*}
\]

Ambiguity in Arithmetic Expressions

A grammar such as

\[
E \rightarrow E + E | E - E | E \cdot E | E / E \\
E \uparrow E | (E) | - E | id
\]

is ambiguous about order of operations.

Want to define

- **Precedence** - which operation is done first?
- **Associativity** - is

\[
X \ op_1 \ Y \ op_2 \ Z
\]

equivalent to \((X \ op_1 \ Y) \ op_2 \ Z\) or to \(X \ op_1 \ (Y \ op_2 \ Z)\) (assuming \(op_1\) and \(op_2\) have same precedence).

The “usual” rules (based on common usage in written math) give the following precedences, highest first:

- (unary minus)
- ↑ (exponentiation)
- * /
- + -

All the binary operators are left-associative except exponentiation (↑).

We can handle precedence/associativity information as “side-conditions” to ambiguous grammar when building a parser (by hand or via a parser generator).

Rewriting Arithmetic Grammars

Can build precedence/associativity into grammar using extra non-terminals, e.g.

\[
\begin{align*}
\text{atom} & \rightarrow \ (\text{expr}) | \text{id} \\
\text{primary} & \rightarrow \ -\text{primary} | \text{atom} \\
\text{factor} & \rightarrow \ \text{primary} \uparrow \text{factor} | \text{primary} \\
\text{term} & \rightarrow \ \text{term} \ast \text{factor} | \text{term} / \text{factor} \ | \text{factor} \\
\text{expr} & \rightarrow \ \text{expr} + \text{term} | \text{expr} - \text{term} \ | \text{term}
\end{align*}
\]

Example: \(id \ast id + id \uparrow id \uparrow id\)

Extended BNF

Various semi-standard extensions to BNF are often used in language manuals.

They allow grammar specifications to avoid explicit recursion and \(\epsilon\)-productions, by adding **optional** symbols, repetition, and grouping.

\[
\begin{align*}
[a] & \text{ means } a | \epsilon \\
\{a\} & \text{ means } \epsilon | a | aa | \ldots \\
(a | b)c & \text{ means } ac | bc
\end{align*}
\]

To avoid confusion between new meta-symbols and terminals, we often enclose the latter in single quotes:

Example:

\[
\begin{align*}
\text{atom} & \rightarrow \ '(' \text{ expr } ')' \ | \text{id} \\
\text{primary} & \rightarrow \ -\text{primary} | \text{atom} \\
\text{factor} & \rightarrow \ \text{primary} \uparrow \{ \uparrow \text{primary} \} \\
\text{term} & \rightarrow \ \{ \text{factor} \ast \} \ | \text{factor} \\
\text{expr} & \rightarrow \ \{ \text{term} \ast \} \ | \text{term}
\end{align*}
\]

Must be careful not to change the generated language accidentally when going between EBNF and BNF.

Also, note that EBNF grammar given in example is ambiguous because we’ve lost the associativity information present in the BNF version (even though both generate same language).
Properties of CFG’s

Any regular language can be described by a CFG.

Example: \((a | b)^*abb\)

\[
\begin{align*}
A_0 & \rightarrow aA_0 | bA_0 | aA_1 \\
A_1 & \rightarrow bA_2 \\
A_2 & \rightarrow bA_3 \\
A_3 & \rightarrow \epsilon
\end{align*}
\]

But we don’t use CFG’s for lexical analysis, because it’s overkill.

Regular expressions are:

- easier to understand
- shorter
- always lead to efficient analyzers

Any CFL can be parsed by a computer program, but only some CFL’s can be parsed efficiently.

We’ll study both “bottom-up” and “top-down” parsing methods.

CFG’s can’t do everything

Not every language is a CFL.

Example: \(L = \{wcw \mid w \in (a | b)^*\}\) is not CF.

- \(L\) abstracts idea of variable declaration before use.
- So “semantic” analysis (type-checking) uses additional (mostly ad-hoc) techniques.