
CS321 Languages and Compiler Design I
Winter 2012

Lecture 9

1

TOP-DOWN VS. BOTTOM-UP PARSING
Top-down:

• Construct tree from root to leaves.

• “Guess” which RHS to substitute for non-terminal.

• Produces left-most derivation.

• Recursive-descent, LL parsers.

• “Easy” for humans.

Bottom-up:

• Construct tree from leaves to root.

• “Guess” which rule to “reduce” terminals.

• Produces reverse right-most derivation.

• Shift-reduce, LR, LALR, etc.

• yacc or CUP parser generator.

• “Harder” for humans.

• Can parse a larger set of languages than top-down.

PSU CS321 W’12 LECTURE 9 c© 1992–2012 ANDREW TOLMACH 2

BOTTOM-UP PARSE EXAMPLE

S → if E then S else S | while E do S | print | ǫ

E → true | false | id

if idb then while true do else print

Parse Tree:
S

�������

if

�
�

�
��

E

idb

�
�
��

then

B
B

BB

S

����

while
�
�

E

true

@
@

do
HHHH

S

ǫ

Z
Z

Z
ZZ

else

HHHHHHH

S

print

PSU CS321 W’12 LECTURE 9 c© 1992–2012 ANDREW TOLMACH 3

LEFT-MOST VS. RIGHT-MOST DERIVATIONS

S

⇒lm if E then S else S

⇒lm if idb then S else S

⇒lm if idb then while E do S else S

⇒lm if idb then while true do S else S

⇒lm if idb then while true do else S

⇒lm if idb then while true do else print

⇐rm if E then while true do else print

⇐rm if E then while E do else print

⇐rm if E then while E do S else print

⇐rm if E then S else print

⇐rm if E then S else S

⇐rm S

PSU CS321 W’12 LECTURE 9 c© 1992–2012 ANDREW TOLMACH 4

BOTTOM-UP PARSE

PSU CS321 W’12 LECTURE 9 c© 1992–2012 ANDREW TOLMACH 5

S

S

S

S

S

S

if id then while true do else print

if id then while true do else print

if id then while true do else print

if id then while true do _ else print

if id then while true do _ else print

if id then while true do _ else print

if id then while true do _ else print

E

E E

E E

E E S

SE E

SE E

S

PSU CS321 W’12 LECTURE 9 c© 1992–2012 ANDREW TOLMACH 6

BOTTOM-UP PARSING

There are many bottom-up parsing algorithms, suitable for different
subsets of CFG’s.

Basic idea: Given input string w, “reduce” it to the goal (start) symbol,
by looking for substrings that match production right-hand sides.

Example:

S → aAcBe

A → Ab | b

B → d

“Right sentential form” Reduction

abbcde

aAbcde A→b

aAcde A→Ab

aAcBe B→d

S S→aAcBe

Steps correspond to a right-most derivation in reverse.

PSU CS321 W’12 LECTURE 9 c© 1992–2012 ANDREW TOLMACH 7

HANDLES

We must choose the production to use wisely!

We don’t always making progress by reducing with a production even
when its right-hand sides match the input.

Example:

abbcde

aAbcde A→b

aAAcde A→b

Stuck!

A handle is a substring that

• is the right-hand side of some production; and

• whose replacement by the production’s left-hand side is a (reverse)
step in a rightmost derivation.

If grammar is unambiguous, handle is unique .

PSU CS321 W’12 LECTURE 9 c© 1992–2012 ANDREW TOLMACH 8

HANDLES , FORMALLY

More formally, a handle is a production A→β and a position in the
current right-sentential form αβw such that:

S
∗

⇒rm αAw ⇒rm αβw

For example grammar, if current right-sentential form is

aAbcde

then the handle is A→Ab at the marked position.

Note that w never contains non-terminals.

PSU CS321 W’12 LECTURE 9 c© 1992–2012 ANDREW TOLMACH 9

HANDLE PRUNING

Idea: Keep removing handles, replacing them with corresponding
left-hand side of production, until we reach S.

Another example:

E→E+E | E*E | (E) | id

Right-sentential form Handle Reducing production

a+b*c a E→id

E+b*c b E→id

E+E*c c E→id

E+E*E E*E E→E*E

E+E E+E E→E+E

E

Note that grammar is ambiguous, so there are actually two handles at
next-to-last step.

Big question: How do we identify handles?

• We will not answer in this course (see textbook on “Building LR(1)

PSU CS321 W’12 LECTURE 9 c© 1992–2012 ANDREW TOLMACH 10

tables”).

PSU CS321 W’12 LECTURE 9 c© 1992–2012 ANDREW TOLMACH 11

SHIFT-REDUCE PARSING

Happily, we can use parser generators that compute the handles for us.

Will concentrate on shift-reduce machine framework used for bottom-up
parsing, so that we can understand generator behavior.

Have stack to hold grammar symbols and input buffer to hold string to
be parsed.

Machine actions:

• Shift input symbols from buffer to stack until a handle is formed.

• Reduce handle by replacing grammar symbols at top of stack by l.h.s.
of production.

• Accept on successful completion of parse.

• Fail on syntax error.

Why a stack ?

Because handles always appear at the top of a stack, i.e., there’s no
need to look deeper into the “state.” This is just a fact about rightmost
derivations.

PSU CS321 W’12 LECTURE 9 c© 1992–2012 ANDREW TOLMACH 12

SHIFT-REDUCE PARSING EXAMPLE

E→E+E | E*E | (E) | id

Stack Input Buffer Action

$ a+b*c$ Shift

$a +b*c$ Reduce: E→id

$E +b*c$ Shift

$E+ b*c$ Shift

$E+b *c$ Reduce: E→id

$E+E *c$ Shift (*)

$E+E* c$ Shift

$E+E*c $ Reduce: E→id

$E+E*E $ Reduce: E→E*E

$E+E $ Reduce: E→E+E

$E $ Accept

Gives E ⇒rm E+E ⇒rm E+E*E ⇒rm E+E*c ⇒rm E+b*c ⇒rm a+b*c.

Why not E ⇒rm E*E ⇒rm E*c ⇒rm E+E*c ⇒rm E+b*c ⇒rm a+b*c ??

PSU CS321 W’12 LECTURE 9 c© 1992–2012 ANDREW TOLMACH 13

CONFLICTS

Ambiguous grammars lead to parsing conflicts .

Can fix by rewriting grammar or by making appropriate choice of action
during parsing.

Shift/Reduce conflicts: should we shift or reduce?

• (See previous example)

• Dangling else is another example.

Reduce/Reduce conflicts: which production should we reduce with?

Example:

stmt → id(expr) (a(i) is procedure call)

expr → id(expr) | id (a(i) is array subscript)

Stack Action

$...a(i) Reduce by ??

Should we reduce to stmt or to expr ? Need to know the type of a: is it an
array or a function? This information must flow from declaration of a to
this use, typically via a symbol table.

PSU CS321 W’12 LECTURE 9 c© 1992–2012 ANDREW TOLMACH 14

LR PARSING

LR parsers are most general non-backtracking shift-reduce parsers
known.

• L stands for “Left-to-right scan of input.”

• R stands for “Rightmost derivation (in reverse).”

Efficient implementations are possible.

Any LL grammar is also LR (and so are many others).

Suffices for almost all programming language CFG’s.

Disadvantage: Extremely tedious to build by hand, so need a generator.

PSU CS321 W’12 LECTURE 9 c© 1992–2012 ANDREW TOLMACH 15

LR PARSER ENGINE

Idea: Implement shift-reduce parser using a DFA to choose actions
based on contents of stack plus zero or more symbols of lookahead.

Components of machine:

• Input buffer.

• Stack of states (and grammar symbols). States “summarize” stack
contents.

• Parsing tables, which encode DFA.

• Driver routine (fixed for all grammars)

Machine is efficient because actions are determined by input and state at
top of stack.

If each entry in LR parsing table is uniquely defined, grammar is an LR
grammar .

PSU CS321 W’12 LECTURE 9 c© 1992–2012 ANDREW TOLMACH 16

LR GRAMMARS

In an LR(k) grammar, parsing moves are determined by state on top of
stack and next k symbols of input. (k = 0, 1 usually enough.)

LR(k) grammars don’t suffice for, e.g., dangling else construct, but it
(and others) can be handled by making a choice of table entry (e.g., Shift
or Reduce).

LR comes in different varieties, based on table construction method,
each able to parse a somewhat different set of languages:

SLR small tables, simple languages

LR(1) large tables, more languages

LALR(1) same size tables as SLR, but more languages (CUP uses these)

LR parsers have more information available than LL parsers when
choosing a production:

• LR(k) knows everything derived from r.h.s. plus k lookahead symbols.

• LL(k) just knows k lookahead symbols into what’s derived from r.h.s.

PSU CS321 W’12 LECTURE 9 c© 1992–2012 ANDREW TOLMACH 17

