Recursive-descent parsers are highly stylized. Can use single table-driven program instead, using two data structures:

Parsing table is 2-dimensional table \(M[X, a] \)

- One entry for every non-terminal \(X \) and terminal \(a \).
- Entries are productions or error indicators.
- Entry \(M[X, a] \) says “what to do” when looking for non-terminal \(X \) while next input symbol is \(a \).

Parsing stack handles recursion explicitly
- Holds “what’s left to match” in the input (in reverse order)

EXAMPLE TABLE AND EXECUTION

Recall arithmetic expression grammar (after left-recursion removal):

\[
\begin{align*}
E & \rightarrow TE' \\
E' & \rightarrow +TE' | \epsilon \\
T & \rightarrow FT' \\
T' & \rightarrow *FT' | \epsilon \\
F & \rightarrow (E) | id
\end{align*}
\]

The corresponding parsing table is:

<table>
<thead>
<tr>
<th></th>
<th>id</th>
<th>+</th>
<th>*</th>
<th>(</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E) (E \rightarrow TE')</td>
<td>(E \rightarrow TE')</td>
<td>(E \rightarrow TE')</td>
<td>(E \rightarrow \epsilon)</td>
<td>(E \rightarrow \epsilon)</td>
<td></td>
</tr>
<tr>
<td>(E') (E' \rightarrow +TE')</td>
<td>(E' \rightarrow +TE')</td>
<td>(E' \rightarrow \epsilon)</td>
<td>(E' \rightarrow \epsilon)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T) (T \rightarrow FT')</td>
<td>(T \rightarrow FT')</td>
<td>(T \rightarrow FT')</td>
<td>(T \rightarrow \epsilon)</td>
<td>(T \rightarrow \epsilon)</td>
<td></td>
</tr>
<tr>
<td>(T') (T' \rightarrow *FT')</td>
<td>(T' \rightarrow *FT')</td>
<td>(T' \rightarrow \epsilon)</td>
<td>(T' \rightarrow \epsilon)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(F) (F \rightarrow id)</td>
<td>(F \rightarrow id)</td>
<td>(F \rightarrow (E))</td>
<td>(F \rightarrow (E))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“Semantic action” code is executed once for each step in the **leftmost derivation** of an input sentence.

and a sample execution is...
Table Construction Algorithm

For each production \(A \rightarrow \alpha \) do
- for each \(a \in \text{FIRST}(\alpha) \) do
 - add \(A \rightarrow \alpha \) to \(M[A, a] \)
- if \(\epsilon \in \text{FIRST}(\alpha) \) then
 - for each \(b \in \text{FOLLOW}(A) \) do
 - add \(A \rightarrow \alpha \) to \(M[A, b] \)
- set any empty elements of \(M \) to error

Parsing Table Construction

\(\text{FIRST}(\alpha) \) is the set of **terminals** (and possibly \(\epsilon \)) that begin strings derived from \(\alpha \), where \(\alpha \) is any string of grammar symbols (terminals or non-terminals). (Book 1st ed. defines \(\text{FIRST()} \) only on individual symbols rather than strings of symbols; our definition is a consistent extension of this.)

\(\text{FOLLOW}(A) \) is the set of **terminals** (possibly including \(\$ \)) that can follow the **non-terminal** \(A \) in some **sentential form** (intermediate phrase in a derivation), i.e., the set of terminals

\[\{ a \mid S \rightarrow^* \alpha A a \beta \text{ for some } \alpha, \beta \} \]

(This definition is equivalent to the book's. Note that there is an erratum for 1st edition Figure 3.5.)

Computing FIRST

For any string of symbols \(\alpha \), \(\text{FIRST}(\alpha) \) is the **smallest** set of terminals (and \(\epsilon \)) obeying these rules:

- \(\text{FIRST}(a\alpha) = \{ a \} \) for any terminal \(a \) and any \(\alpha \) (empty or non-empty)
- \(\text{FIRST}(\epsilon) = \{ \epsilon \} \)
- \(\text{FIRST}(A) = \text{FIRST}(\alpha_1) \cup \text{FIRST}(\alpha_2) \cup \ldots \cup \text{FIRST}(\alpha_n) \)
 - where \(A \rightarrow \alpha_1 \mid \alpha_2 \mid \ldots \mid \alpha_n \) are all the productions for \(A \)
- \(\text{FIRST}(A\alpha) = \) if \(\epsilon \notin \text{FIRST}(A) \) then \(\text{FIRST}(A) \)
 - else \(\{ \epsilon \} \cup \text{FIRST}(\alpha) \)
Example FIRST computation

\[
\begin{align*}
\text{FIRST}(F) &= \text{FIRST}(E) \cup \text{FIRST}(\text{id}) = \{ \text{id} \} \\
\text{FIRST}(T') &= \text{FIRST}(FT') \cup \text{FIRST}(\epsilon) = \{ \epsilon \} \\
\text{FIRST}(T) &= \text{FIRST}(FT') = \text{FIRST}(F) = \{ \text{id} \} \\
\text{FIRST}(E') &= \text{FIRST}(TE') \cup \text{FIRST}(\epsilon) = \{ \epsilon \} \\
\text{FIRST}(E) &= \text{FIRST}(TE') = \text{FIRST}(T) = \{ \text{id} \}
\end{align*}
\]

Example FOLLOW computation

<table>
<thead>
<tr>
<th>Computation</th>
<th>Relevant Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{FOLLOW}(E)) = { \text{id} } \cup \text{FIRST}(\text{id}))</td>
<td>(F \rightarrow (E))</td>
</tr>
<tr>
<td>(\text{FOLLOW}(E')) = \text{FOLLOW}(E) = { \text{id} })</td>
<td>(E \rightarrow T E')</td>
</tr>
<tr>
<td>(\text{FOLLOW}(T)) = (\text{FIRST}(E') - { \epsilon }) \cup \text{FOLLOW}(E) \cup \text{FOLLOW}(E'))</td>
<td>(E \rightarrow T E')</td>
</tr>
<tr>
<td>(\text{FOLLOW}(T')) = (\text{FOLLOW}(T)) = (\text{FIRST}(T') - { \epsilon }) \cup \text{FOLLOW}(T) \cup \text{FOLLOW}(T'))</td>
<td>(T \rightarrow FT')</td>
</tr>
<tr>
<td>(\text{FOLLOW}(F)) = (\text{FIRST}(T') - { \epsilon }) \cup \text{FOLLOW}(T) \cup \text{FOLLOW}(T'))</td>
<td>(T' \rightarrow FT')</td>
</tr>
</tbody>
</table>

Computing FOLLOW

Must compute simultaneously for all non-terminals \(A \).

FOLLOW sets are **smallest** sets obeying these rules:

- \(\$$ \text{is in FOLLOW}(S) \)
- If there is a production \(A \rightarrow \alpha B \beta \), then everything in \(\text{FIRST}(\beta) - \{ \epsilon \} \) is in \(\text{FOLLOW}(B) \).
- If there is a production \(A \rightarrow \alpha B \beta \) where \(\beta = \epsilon \) or \(\epsilon \in \text{FIRST}(\beta) \), then everything in \(\text{FOLLOW}(A) \) is in \(\text{FOLLOW}(B) \).

LL(1) grammars

A grammar can be used to build a predictive table-driven parser \(\Leftrightarrow \) parsing table \(M \) has no duplicate entries.

In terms of FIRST and FOLLOW sets, this means that, for each production

\(A \rightarrow \alpha_1 | \alpha_2 | \ldots | \alpha_n \)

- All \(\text{FIRST}(\alpha_i) \) are disjoint, and
- There is at most one \(i \) such that \(\epsilon \in \text{FIRST}(\alpha_i) \), and, if there is such an \(i \), \(\text{FOLLOW}(A) \cap \text{FIRST}(\alpha_j) = \emptyset \) for all \(j \neq i \).

Such grammars are called **LL(1)**.

- The first **L** stands for “Left-to-right scan of input.”
- The second **L** stands for “Leftmost derivation.”
- The **1** stands for “1 token of lookahead.”

No LL(1) grammar can be ambiguous or left-recursive.