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SYNTAX ANALYSIS

Specify legal program formats using context-free grammar (CFG)

• Use Backus-Naur Form (BNF) as notation.

• Gives precise, readable specification.

• Many CFG’s have efficient parsers .

• Parser recognizes syntactically legal programs and rejects illegal
ones.

Successful parse also captures hierarchical structure of programs
(expressions, blocks, etc.).

• Convenient representation for further semantic checking (e.g., types)
and for code generation.

We can use another program generator (e.g., yacc or CUP) to generate
parser automatically from grammar.
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GRAMMARS

A Context-free Grammar is described by a set of productions (also
called rewrite rules ), e.g.:

stmt → if expr then stmt else stmt

expr → expr + expr | expr * expr

| (expr) | -expr | id

Grammars contain terminals (≡ tokens ) (e.g. if,+,id) and
non-terminals (e.g., expr,stmt).

Grammars have a distinguished start symbol (ordinarily listed first, e.g.,
stmt).

The language generated by a grammar is the set of sentences (strings)
of terminals that can be derived by repeated application of productions,
beginning with start symbol .

• We write L(G) for the language generated by grammar G.
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PARSE TREES

A parse tree is the graphical representation of a derivation.

Example tree for derivation of sentence -(idx + idy) :
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Each application of a production corresponds to an internal node,
labeled with a non-terminal .

Leaves are labeled with terminals , possibly with attributes.

The derived sentence is found by reading leaves left-to-right.
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DERIVATIONS

Can “linearize” a parse tree into a sequence of one-step derivations.

Example:

expr ⇒ - expr

⇒ -(expr)

⇒ -(expr + expr)

⇒ -(idx + expr)

⇒ -(idx + idy)

or

expr ∗

⇒ -(idx + idy)

Here ⇒is pronounced “derives” and ∗

⇒is pronounced “derives in zero or
more steps.”

This example gives a leftmost derivation , i.e., at each step, the leftmost
non-terminal is replaced.
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DERIVATIONS (2)

We can define rightmost derivation analogously:

expr ⇒ - expr

⇒ -(expr)

⇒ -(expr + expr)

⇒ -(expr + idy)

⇒ -(idx + idy)

Every parse tree has a unique leftmost derivation and a unique
rightmost derivation.

(These are usually, but not necessarily, different.)
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AMBIGUITY

BUT a given sentence in L(G) can have more than one parse tree.
Grammars G for which this is true are called ambiguous .

Example: with our grammar, the sentence

idx + idy * idz

has two parse trees:
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We might think that the left tree is the “correct” one, but nothing in the
grammar says this.
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RESOLVING AMBIGUITIES

Ambiguous grammars can be a significant problem in practice, because
we rely on the parse tree to capture the basic structure of a program.

To avoid the problems of ambiguity, we can try to:

• Rewrite grammar

• Use “disambiguating rules” when we implement parser for grammar.

When using these techniques, we must be careful not to change the
language generated by our grammar. And often, we must do extra work
to make sure that the (unique) parse trees we end up with are the ones
we wanted.
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A CLASSIC AMBIGUITY : THE “ DANGLING ELSE ”

Suppose we want else clauses to be optional in if statements. Here’s a
possible grammar:

stmt → if expr then stmt

| if expr then stmt else stmt | ...

Given this grammar, a statement of the form

if E1 then if E2 then S1 else S2

has two possible parse trees...
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RESOLVING AMBIGUITY BY REWRITING GRAMMAR

For most languages, we want the first tree (else goes with most recent
then), but grammar is ambiguous.

Solution: rewrite grammar using new non-terminals mst (“matched
statement”) and ust (“unmatched statement”).

stmt → mst | ust

mst → if expr then mst else mst

| . . .

ust → if expr then stmt

| if expr then mst else ust

Now only one parse is possible.

Assuming S1,S2 are not unmatched if statements, we get...
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AMBIGUITY IN ARITHMETIC EXPRESSIONS

A grammar such as

E → E + E | E - E | E * E | E / E

E ↑ E | (E) | - E | id

is ambiguous about order of operations.

Want to define

• Precedence - which operation is done first (“binds more tightly”) ?

• Associativity - is

X op1 Y op2 Z

equivalent to

(X op1 Y) op2 Z (left-associativity)

or to

X op1 (Y op2 Z) (right-associativity)

assuming op1 and op2 have same precedence?
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STANDARD PRECEDENCE AND ASSOCIATIVITY

The “usual” rules (based on common usage in written math) give the
following precedences, highest first:

- (unary minus)

↑ (exponentiation)

* /

+ -

All the binary operators are left-associative except exponentiation (↑).

Note that these rules are just a matter of convention ; a programming
language designer might choose different ones.

We can handle precedence/associativity information as “side-conditions”
to ambiguous grammar when building a parser (by hand or via a parser
generator).
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REWRITING ARITHMETIC GRAMMARS

Can build precedence/associativity into grammar using extra
non-terminals, each corresponding to a separate level of precedence:

atom → (expr) | id

primary → -primary | atom

factor → primary ↑ factor | primary

term → term * factor | term / factor | factor

expr → expr + term | expr - term | term
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Example: idx * idy + idz ↑ idu ↑ idv
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EXTENDED BNF

Various semi-standard extensions to BNF are often used in language
manuals.

They allow grammar specifications to avoid explicit recursion and
ǫ -productions, by adding optional symbols, repetition , and grouping .

[a] means a | ǫ

{a} means ǫ | a | aa | . . .

(a | b)c means ac | bc

To avoid confusion between new meta-symbols and terminals, we often
enclose the latter in single quotes:

Example:

atom → ’(’ expr ’)’ | id

primary → -primary | atom

factor → primary { ↑ primary }

term → { factor ( * | / ) } factor

expr → { term ( + | - ) } term
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ISSUES WITH EBNF

Must be careful not to change the generated language accidentally when
going between EBNF and BNF.

Also, note that EBNF grammar given in example is ambiguous because
we’ve lost the associativity information present in the BNF version (even
though both generate same language).

Often, a language’s grammar will be given in ambiguous EBNF tegether
with separate informal specifications that resolve the ambiguities.

PSU CS321 W’12 LECTURE 6 c© 1992–2012 ANDREW TOLMACH 19

PROPERTIES OF CFG’S

Any regular language can be described by a CFG.

Example: (a|b)*abb

A0 → aA0 | bA0 | aA1

A1 → bA2

A2 → bA3

A3 → ǫ

But we don’t use CFG’s for lexical analysis, because it’s overkill.

Regular expressions are:

• easier to understand

• shorter

• always lead to efficient analyzers

Any CFL can be parsed by a computer program, but only some CFL’s
can be parsed efficiently .

We’ll study both “bottom-up” and “top-down” parsing methods.
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CFG’S CAN ’T DO EVERYTHING

Not every language is a CFL.

Example: L = {wcw | w ∈ (a | b)∗} is not CF.

• L abstracts idea of variable declaration before use.

• So “semantic” analysis (type-checking) uses additional (mostly ad-hoc)
techniques.
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