
CS321 Languages and Compiler Design I
Winter 2012

Lecture 5

1



FINITE AUTOMATA

A non-deterministic finite automaton (NFA) consists of:

• An input alphabet Σ, e.g. Σ = a, b.

• A set of states S, e.g. S = {1, 3, 5, 7, 11, 97}.

• A designated start state, e.g. state 1.

• A designated set of final states, e.g. {5, 97}.

• A set of transitions from states to states, labelled by elements of Σ or ǫ ,
e.g.

97

a

a

b

a

b

b

b

ε

ε

1

3

5

7

11

PSU CS321 W’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 2



NFA’ S ACCEPT STRINGS

0 1 2 3
a b

a

εb

b

Can also write as transition table .

Input

State a b ǫ

→ 0 {0,1} {0} -

1 - {2} {3}

2 - {3} -

∗3 - - -

An NFA accepts the string x if there is a path from start to final state
labeled by the the characters of x, possibly including some ǫ ’s.

Example: NFA above accepts the strings “aaabb”, “aaabbabb”, and “a”,
among many others.

PSU CS321 W’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 3



NFA’ S AND REGULAR LANGUAGES

0 1 2 3
a b

a

εb

b

An NFA accepts the language L if it accepts exactly the strings in L.

Example: NFA above accepts the language defined by the R.E.
(a∗b∗)∗a(bb | ǫ ).

Fact : For every regular language L, there exists an NFA that accepts L.

PSU CS321 W’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 4



NFA’ S FROM R.E.’S

Can give an algorithm for constructing an NFA from an R.E., such that
the NFA accepts the language defined by the R.E.

• Algorithm is recursive, and is based on the recursively defined structure
of R.E.’s.

• Makes heavy use of ǫ -transitions.

Base Constructions
ε

Σa in

ε

a

Inductive Constructions build new machines by connecting existing
machines using ǫ -transitions to existing initial states and from existing
final states.

Note that each constructed machine has exactly one initial state and one
final state.

PSU CS321 W’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 5



INDUCTIVE CONSTRUCTIONS

M1

M2

M

R*

ε

ε

ε

ε

M1 M2

��
��
��
��

R | R1
ε
ε

ε

ε

2

R R1 2

ε

PSU CS321 W’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 6



NFA CONSTRUCTION EXAMPLE

a

b

ε
ε

ε
ε

aa 

b
b

a|b

(a|b)*

a

b

ε
ε ε

ε εε

ε

ε

bε

Example:  (a|b)*|(cbb)

cb
c

PSU CS321 W’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 7



Example (continued)

bε ε

ε

a

b

ε
ε ε

ε εε

ε

ε

(a|b)*|(cbb)

c

bε εc b

cbb

ε
ε

b
ε

PSU CS321 W’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 8



c b b

Example (continued)

Can simplify NFA’s by removing useless 
empty-string transitions: 

(a|b)*|(cbb)

Or even simpler:

ε

ε

ε
ε

ε

b b
c

a

b

ε
ε

ε

ε

εb

a

ε

PSU CS321 W’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 9



NFA’ S FOR LEXICAL PATTERN R.E.S’

i f

RELATION

< =

>
=

=

Non-deterministic

Resolve non-determinism

by accepting longest
possible string!

letter (letter|digit)*
ε

ε

εletter letter
digit

Non-deterministic

or, simpler:

letter
letter

digit

Still non-deterministic
  (when to stop??)

ID     

IF

shorthand

PSU CS321 W’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 10



NFA for pattern #1

  among a
Lexical analyzer must find 

set of patterns.

Try:

Then try: 

...

Finally, try: 

NFA for pattern #2

NFA for pattern #n

Must reset input string after each unsuccessful
 match attempt.

Always choose pattern that allows longest input
string to match.  Must specify which pattern 
should  ‘win’ if two or more match the same
length of input.

   matchbest

PSU CS321 W’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 11



NFA for pattern #2

NFA for pattern #n

...

NFA for pattern #1

ε
ε

ε
ε

ε

ε

...

Alternatively, combine all the NFA’s into one giant
NFA, with distinguished final states:

Now can have non-determinism between patterns,
as well as within a single pattern, e.g:

i
f

letter

digit

letter

ε

ε

Found keyword IF

Found an identifier

PSU CS321 W’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 12



IMPLEMENTING NFA’ S

Behavior of an NFA on a given input string is ambiguous.

So NFA’s don’t lead to a deterministic computer program.

Can convert to deterministic finite automaton (DFA).

• (Also called “finite state machine.”)

• Like NFA, but has no ǫ -transitions and no symbol labels more than one
transition from any given node.

• Easy to simulate on computer.

• There is an algorithm (“subset construction”) that can convert any NFA
to a DFA that accepts the same language.

Alternative approach: Simulate NFA directly by pretending to follow all
possible paths “at once.”

To handle “longest match” requirement, must keep track of last final state
entered, and backtrack to that state (“unreading” characters) if get stuck.

PSU CS321 W’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 13



DFA AND BACKTRACKING EXAMPLE

Given the following set of patterns:

a

abb

a∗b+

abab

We want to build a machine to find the longest match; in case of ties,
favor the pattern listed first.

Here’s the NFA:

0

1 2

3 4 5 6

7 8

9 10 11 12 13

ε

ε
ε

ε

a

a b b

a
b

b

a b a b

a

abb

a*b+

abab

PSU CS321 W’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 14



CORRESPONDING DFA

0 1 3 7 9 

2 4 7 10

8 6 8

5 8 11 12 13

7

b

a

b

b

a

a
b a b

b

b

a

a*b+

a*b+
abb

a*b+

abab

Consider input “a” :

• Machine stops in state (2 4 7 10).

• Pattern is a.

• Lexeme is “a”.

PSU CS321 W’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 15



CORRESPONDING DFA

0 1 3 7 9 

2 4 7 10

8 6 8

5 8 11 12 13

7

b

a

b

b

a

a
b a b

b

b

a

a*b+

a*b+
abb

a*b+

abab

Conider input “aaab”:

• Machine stops in state (8)

• Pattern is a∗b+.

• Lexeme is “aaab”.

PSU CS321 W’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 16



CORRESPONDING DFA

0 1 3 7 9 

2 4 7 10

8 6 8

5 8 11 12 13

7

b

a

b

b

a

a
b a b

b

b

a

a*b+

a*b+
abb

a*b+

abab

Consider input “abba” :

• Machine stops after second “b” in state (6 8).

• Pattern is abb because it comes first in spec.

• Lexeme is “abb”; final “a” will be read again next time.

PSU CS321 W’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 17



CORRESPONDING DFA

0 1 3 7 9 

2 4 7 10

8 6 8

5 8 11 12 13

7

b

a

b

b

a

a
b a b

b

b

a

a*b+

a*b+
abb

a*b+

abab

Consider input “abaa”:

• Machine gets stuck after “aba” in state (12).

• Backs up to state (5 8 11), unreading “a”

• Pattern is a∗b+

• Lexeme is “ab”; final “aa” will be read again next time.

PSU CS321 W’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 18



JFLEX

JFlex is a lexical analyzer generator

• Java version of original AT&T lex tool for C; many similar tools exist.
Details of use may vary.

• accepts specification of lexical analyzer.

• produces Java program that implements specification.

PSU CS321 W’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 19



run by:

class Yylex

java JFlex.Main foo.lex

Character
input
stream Tokens

parser or
driver source
files

   (foo.lex)

Lexical analyzer

method yylex()   
in Java

Java Compiler

JFlex source        JFlex

     (Yylex.java)

Executable
Analyzer
Lexical

PSU CS321 W’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 20



JFLEX RULE SPECIFICATIONS

The main input to JFlex is a sequence of rules , each consisting of a

• Pattern – regular expression (using ASCII as alphabet)

• Action – fragment of Java code

When prefix of input matches a pattern, the generated analyzer executes
the corresponding action.

Actions can make use of built-in variables and methods

• yytext() returns lexeme as a String

• yyline contains current line number (must use %line option).

PSU CS321 W’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 21



JFLEX RULES EXAMPLE

%%

%%

integer {println("found keyword INTEGER");}

[0-9]+ {println("found number");}

[A-Z][A-Z]* {println("found ident " + yytext());}

[ \t\n] { /* ignore white space */ }

As usual, if more than one pattern matches, the longest match is
preferred; ties are broken in favor of rule that appears first.

PSU CS321 W’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 22



JFLEX PATTERNS

Patterns include literal text and meta-level operators.

Pattern Matches

x character “x”

"x" character “x” even if it’s an operator

\x ditto

[xy] “x” or “y”

[x-y] characters between “x” and “y” inclusive

[^s] any character not in set s

. any character but “\n”

p? an optional p

p* zero or more p’s

p+ one or more p’s

p|q p or q

() grouping

{d} substitute definition for d

PSU CS321 W’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 23



JFLEX ACTIONS

Actions can be any valid Java statement block.

Ordinarily each action terminates with a statement return t; which
causes yylex() to return with the token value t.

Otherwise, yylex() throws away the lexeme and continues searching for
another pattern. This is suitable for handling white space. The simplest
possible action is just the empty block {}.

yylex() raises an exception if no pattern matches. So it is a good idea to
include a “catch-all” pattern as the last rule, e.g.:

. { System.err.println("Unexpected character"); }

PSU CS321 W’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 24



JFLEX DIRECTIVES

The complete form of a JFlex specification is:

user code

%%

JFlex directives

%%

rules

Directives include control instructions, such as %line, which says the
generated code should keep track of line numbers.

Directives can also include macro definitions , which abbreviate regular
expressions for later use in patterns, e.g.,

%%

LETTERS=[a-zA-Z_]

DIGITS=[0-9]

%%

{LETTERS}({LETTERS}|{DIGITS})* {return new Token(ID);}

PSU CS321 W’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 25



JFLEX USER CODE

User code is just copied directly to the top of the generated .java file; it
can contain functions and globals to be invoked from the actions.

Such code can also be included in the directives section if enclosed
between %{ and %}; in this case, it is copied into the inside of the
generated Yylex class.

PSU CS321 W’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 26



JFLEX STATES

JFlex permits multiple sets of rules to coexist in the same specification.
Each set of rules is associated with a state .

Rules prefixed with <name> are recognized (only) when yylex() is in the
state name.

When yylex() starts running it is in the state with the predefined name
YYINITIAL.

You declare new state names in a %state line in the definitions section of
the spec. You put yylex() into state name by including the method call

yybegin(name);

in an action.

PSU CS321 W’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 27



EXAMPLE USING JFLEX STATES

Example: multi-line comments in Java.

%%

%state COMMENT

%%

<YYINITIAL>"/*" { yybegin(COMMENT); }

<COMMENT>"*/" { yybegin(YYINITIAL); }

<COMMENT>.|"\n" { /* ignore comments */ }

<YYINITIAL> ... ordinary rules follow
<YYINITIAL> ...

PSU CS321 W’12 LECTURE 5 c© 1992–2012 ANDREW TOLMACH 28


