
CS321 Languages and Compiler Design I
Winter 2012

Lecture 1

1

COURSE GOALS

• Improve understanding of languages and machines .

• Learn practicalities of translation .

• Learn “anatomy” of programming languages.

• Apply computer science theory to practical problems (using tools).

• Do large programming project .

PSU CS321 W’12 LECTURE 1 c© 1992–2012 ANDREW TOLMACH 2

COMPILERS

A compiler is a translator from “high-level” language to assembly
code/object language.

Language L −→ TRANSLATOR −→ Language L’

Examples of translators:

Pascal,C, etc. −→ Compiler −→ Machine Code

Java −→ Compiler −→ Byte Code

Ratfor −→ Preprocessor −→ Fortran

Tex −→ Text Formatter −→ Postscript

SQL −→ DB Optimizer −→ Query plan

We study common features of translators, by building one.

PSU CS321 W’12 LECTURE 1 c© 1992–2012 ANDREW TOLMACH 3

LANGUAGE DESIGN

We study languages mainly from an implementor’s viewpoint.

• How do compilation feasibility and runtime efficiency affect
language design?

(There are more “theoretical” approaches to studying programming
languages, and there are interesting and useful languages that don’t
compile easily...)

PSU CS321 W’12 LECTURE 1 c© 1992–2012 ANDREW TOLMACH 4

“V ON NEUMANN” M ACHINE

Control Store

args
Program
counter (PC)

operator

Registers

 Data Store

 load store arith/logic

 compare jump i/o

r1
r2
r3
r4

rn

instr
instr
instr

instr

0
1
2
3

m-1
m

PSU CS321 W’12 LECTURE 1 c© 1992–2012 ANDREW TOLMACH 5

FEATURES OF LOW-LEVEL CODE

• Sequential control flow + labels + jumps

• Small set of built-in data types and operators (e.g., byte, integer,
floating point)

• Flat linear address space.

• Memory hierarchy (registers faster than memory faster than disk).

PSU CS321 W’12 LECTURE 1 c© 1992–2012 ANDREW TOLMACH 6

“H IGH-LEVEL” L ANGUAGES

E.g., Fortran, Pascal, C, Cobol, Java, JavaScript, Python...

Example

func rev (a: @real, n:int) {

var i := 0;

var j := n - 1;

while i < j do {

var x := a[i];

a[i] := a[j];

a[j] := x;

i := i + 1;

j := j - 1

}

}

PSU CS321 W’12 LECTURE 1 c© 1992–2012 ANDREW TOLMACH 7

FEATURES OF HIGH-LEVEL CODE

• Expressions (arithmetic, logical)

• Control structures (loops, conditionals, etc.)

• Type declarations and type checking

• Composite types (arrays, records, etc.)

• Procedures/Functions, with private scope

• Abstraction facilities!

PSU CS321 W’12 LECTURE 1 c© 1992–2012 ANDREW TOLMACH 8

MEETING IN THE MIDDLE

How can we make high-level language run on a Von Neumann machine?

Answer:

• Translate HLL into lower-level code
(in traditional compiler, to machine code.)

and/or

• Build a “higher level” virtual machine
(in traditional interpreter, perhaps a stack machine.)

In practice, we do some of both, even in a compiler, since generated
machine code makes use of a runtime library and operating system.

PSU CS321 W’12 LECTURE 1 c© 1992–2012 ANDREW TOLMACH 9

COMPILER STRUCTURE: WANT SIMPLICITY AND FLEXIBILITY

Source Code

Lexical Analysis

Tokens

Syntax Analysis

Intermediate Code Generation

I. R.
(Bytecode, Trees, etc.)

Code Optimization

I.R.

Code Generation

Assembly/Object Code

"Parse Trees"

(& "Semantic Analysis")

Symbol
Management

Error Handling

dependent)
(Language−
"Front End"

"Back End"
(Machine−
dependent)

Interpreter

CS321

CS322

PSU CS321 W’12 LECTURE 1 c© 1992–2012 ANDREW TOLMACH 10

FRONT-END EXAMPLE

Tools: yacc, javaCup, jacc, etc.

Lexical Analysis

"linear"

if (a <= b[i]) a := 4.5 ;Source characters:

Theory: regular languages, FAs

Syntax Analysis

"hierarchical"

Parse tree:
(real or conceptual)

statement

IF−THEN

predicate statement

<= ASSIGN

expr expr

array−
lookup

exprvar

var expr

constID a

ID b ID i

ID a

FCONST 4.5

 (ID a) ASSGN (FCONST 4.5) ’;’

Tools: lex,Jflex, etc.

Token stream: IF ’(’ (ID a) LE (ID b) ’[’ (ID i) ’]’ ’)’

Theory: context−free languages,
 PDA’s

PSU CS321 W’12 LECTURE 1 c© 1992–2012 ANDREW TOLMACH 11

LANGUAGE DEFINITION

Syntax is easy.

• Well-understood.

• Good theory: regular and context-free languages and automata.

• Good tools, even for complex cases.

Semantics are hard.

• Inherently complex.

• Variety of choices:

Informal — Reference Manual

Operational — Definitional interpreter

(↑ we will focus here)

Axiomatic — Logic

Denotational — Mathematical functions

etc.

• Few tools.

PSU CS321 W’12 LECTURE 1 c© 1992–2012 ANDREW TOLMACH 12

