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COURSE GOALS

• Improve understanding of languages and machines .

• Learn practicalities of translation .

• Learn “anatomy” of programming languages.

• Apply computer science theory to practical problems (using tools ).

• Do large programming project .
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COMPILERS

A compiler is a translator from “high-level” language to assembly
code/object language.

Language L −→ TRANSLATOR −→ Language L’

Examples of translators:

Pascal,C, etc. −→ Compiler −→ Machine Code

Java −→ Compiler −→ Byte Code

Ratfor −→ Preprocessor −→ Fortran

Tex −→ Text Formatter −→ Postscript

SQL −→ DB Optimizer −→ Query plan

We study common features of translators, by building one.
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LANGUAGE DESIGN

We study languages mainly from an implementor’s viewpoint.

• How do compilation feasibility and runtime efficiency affect
language design?

(There are more “theoretical” approaches to studying programming
languages, and there are interesting and useful languages that don’t
compile easily...)
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FEATURES OF LOW-LEVEL CODE

• Sequential control flow + labels + jumps

• Small set of built-in data types and operators (e.g., byte, integer,
floating point)

• Flat linear address space.

• Memory hierarchy (registers faster than memory faster than disk).
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“H IGH-LEVEL” L ANGUAGES

E.g., Fortran, Pascal, C, Cobol, Java, JavaScript, Python...

Example

func rev (a: @real, n:int) {

var i := 0;

var j := n - 1;

while i < j do {

var x := a[i];

a[i] := a[j];

a[j] := x;

i := i + 1;

j := j - 1

}

}
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FEATURES OF HIGH-LEVEL CODE

• Expressions (arithmetic, logical)

• Control structures (loops, conditionals, etc.)

• Type declarations and type checking

• Composite types (arrays, records, etc.)

• Procedures/Functions, with private scope

• Abstraction facilities!
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MEETING IN THE MIDDLE

How can we make high-level language run on a Von Neumann machine?

Answer:

• Translate HLL into lower-level code
(in traditional compiler, to machine code.)

and/or

• Build a “higher level” virtual machine
(in traditional interpreter, perhaps a stack machine.)

In practice, we do some of both, even in a compiler, since generated
machine code makes use of a runtime library and operating system.
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COMPILER STRUCTURE: WANT SIMPLICITY AND FLEXIBILITY
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FRONT-END EXAMPLE

Tools: yacc, javaCup, jacc, etc.

Lexical Analysis

"linear"

if (a <= b[i]) a := 4.5 ;Source characters:

Theory: regular languages, FAs

Syntax Analysis

"hierarchical"

Parse tree:
(real or conceptual)

statement

IF−THEN

predicate statement

<= ASSIGN

expr expr

array−
lookup

exprvar

var expr

constID a

ID b ID i

ID a

FCONST 4.5

     (ID a) ASSGN (FCONST 4.5) ’;’

Tools: lex,Jflex, etc.

Token stream: IF ’(’ (ID a) LE (ID b) ’[’ (ID i) ’]’ ’)’

Theory: context−free languages,
                PDA’s
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LANGUAGE DEFINITION

Syntax is easy.

• Well-understood.

• Good theory: regular and context-free languages and automata.

• Good tools, even for complex cases.

Semantics are hard.

• Inherently complex.

• Variety of choices:

Informal — Reference Manual

Operational — Definitional interpreter

(↑ we will focus here)

Axiomatic — Logic

Denotational — Mathematical functions

etc.

• Few tools.
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