
CS321 Languages and Compiler Design I
Winter 2012
Lecture 14a

1



DEFININING SUBTYPING

We write T � U for “T is a subtype of U .”

The intended meaning is that a value of type T may be used wherever a
valud of type U is needed.

We can describe valid subtyping using inference rules.

Fundamental rules:

T � T

T � U U � W

T � W

Typical subtyping rules for primitive types:

int � real

and others, depending on language.

PSU CS321 W’12 LECTURE 14A c© 1992–2012 ANDREW TOLMACH 2



RECORD SUBTYPING

Can be structural or nominal (just like type equivalence).

Basic structural rule is:

R1 has all the fields ofR2 and maybe more
R1 � R2

(Depending on how record accesses are implemented, the extra fields in
R1 may need to be added at the end of the record to ensure safety.)

Under nominal equivalence, we require the record subtyping relation to
be explicitly declared. E.g. in fab, given these declarations:

record A {a:integer}

record B extends A {b:boolean}

record C extends B {c:real}

we have C � B and B � A.

Don’t get confused: B is a subtype of A even though a B value has more
fields than an A value.

PSU CS321 W’12 LECTURE 14A c© 1992–2012 ANDREW TOLMACH 3



MORE STRUCTURAL SUBTYPING RULES

Pairs

Given immutable pair types T1 × T2, whose values are constructed with
(e1,e2) and dereferenced with e.fst and e.snd, we have this covariant
rule:

T1 � U1 T2 � U2

T1 × T2 � U1 × U2

Functions

Given function types of the form T1 × T2 × . . . × Tn → T , we have

U1 � T1 U2 � T2 . . . Un � Tn T � U

T1 × T2 × . . . × Tn → T � U1 × U2 × . . . × Un → U

This rule is covariant on the result type but contravariant on the
argument types.

PSU CS321 W’12 LECTURE 14A c© 1992–2012 ANDREW TOLMACH 4



FUNCTION SUBTYPING EXAMPLES

To see why the function rule is appropriate, consider the following fab
code fragments (with the definitions of A,B,C above):

func f (g : B -> B) {

var b0 : B = B {a = 100, b = true};

var b1 = g (b0);

if b1.b then ... else ...}

func g1 (x:A) : C {

if x.a = 0 then ... else ...;

return C {a = 100, b = true, c = 3.14} }

func g2 (x:C) : B { if x.c > 2.71 then ... else ...; }

func g3 (x:B) : A { return A {a = 100} }

The call f(g1), which is legal (matches the subtyping rule), works fine.
The call f(g2), which illegally treats the argument as covariant, fails
because f passes a B (rather than a C) to g2, so the lookup x.c fails.
The call f(g3), which illegally treats the result as contravariant, fails
because g3 returns only an A (rather than a B) to f, so the lookup b1.b

fails.

PSU CS321 W’12 LECTURE 14A c© 1992–2012 ANDREW TOLMACH 5



SUBTYPING ARRAYS

For the fab array types @T (i.e. array of T), the safe structural subtyping
rule is:

@T � @T

This rule is invariant on the array element type.

To see why neither covariance nor contravariance is appropriate,
consider the following fab fragments (with the definitions of A,B,C above):

func f (x: @B) { if x[0].b then ... }

func g (x: @B) { x[0] = B{a = 10, b = true} }

var wa = A {a = 10};

var za = @A {1 of wa};

var wc = C {a = 10, b= true, c= 3.14};

var zc = @C {1 of wc}

PSU CS321 W’12 LECTURE 14A c© 1992–2012 ANDREW TOLMACH 6



SUBTYPING ARRAYS (CONTINUED)

Clearly we cannot let subtyping be contravariant in T : if it were, the call
f(za) would be legal, but it would fail when f tries to look up the b
component.

But also, we cannot let subtyping be covariant in T . If it were, the
sequence

g(zc);

if (zc[0].c > 2.71) then ... else ...

would be legal. But this sequence fails because g updates the 0’th
element of zc to contain a B rather than a C; after the return the lookup of
zc[0].c fails.

Note that Java actually does permit covariant subtyping of arrays. To
avoid safety problems, every store into an array (of reference types) –
such as the assignment in g – is checked at runtime to ensure that the
stored value is of the same type as the array. So in this example, calling
g(zc) would pass the type checker but generate a checked runtime error
(exception).

PSU CS321 W’12 LECTURE 14A c© 1992–2012 ANDREW TOLMACH 7


