DEFINING SUBTYPING

We write $T \triangleleft U$ for “T is a subtype of U.”

The intended meaning is that a value of type T may be used wherever a value of type U is needed.

We can describe valid subtyping using inference rules.

Fundamental rules:

\[
T \triangleleft T
\]

\[
T \triangleleft U \quad U \triangleleft W \quad \longrightarrow \quad T \triangleleft W
\]

Typical subtyping rules for primitive types:

\[
\text{int} \triangleleft \text{real}
\]

and others, depending on language.
Can be structural or nominal (just like type equivalence).

Basic **structural** rule is:

\[
R_1 \text{ has all the fields of } R_2 \text{ and maybe more} \quad \Rightarrow \quad R_1 \ll R_2
\]

(Depending on how record accesses are implemented, the extra fields in \(R_1 \) may need to be added at the end of the record to ensure safety.)

Under **nominal** equivalence, we require the record subtyping relation to be explicitly declared. E.g. in **fab**, given these declarations:

```plaintext
record A {a:integer}
record B extends A {b:boolean}
record C extends B {c:real}
```

we have \(C \ll B \) and \(B \ll A \).

Don’t get confused: \(B \) is a **subtype** of \(A \) even though a \(B \) value has more fields than an \(A \) value.
More Structural Subtyping Rules

Pairs

Given immutable pair types $T_1 \times T_2$, whose values are constructed with (e_1, e_2) and dereferenced with $e.fst$ and $e.snd$, we have this **covariant** rule:

$$
\frac{T_1 \triangleleft U_1 \quad T_2 \triangleleft U_2}{T_1 \times T_2 \triangleleft U_1 \times U_2}
$$

Functions

Given function types of the form $T_1 \times T_2 \times \ldots \times T_n \rightarrow T$, we have

$$
\frac{U_1 \triangleleft T_1 \quad U_2 \triangleleft T_2 \quad \ldots \quad U_n \triangleleft T_n \quad T \triangleleft U}{T_1 \times T_2 \times \ldots \times T_n \rightarrow T \triangleleft U_1 \times U_2 \times \ldots \times U_n \rightarrow U}
$$

This rule is **covariant** on the result type but **contravariant** on the argument types.
FUNCTION SUBTYPING EXAMPLES

To see why the function rule is appropriate, consider the following \texttt{fab}
code fragments (with the definitions of \texttt{A,B,C} above):

\begin{verbatim}
func f (g : B -> B) {
 var b0 : B = B {a = 100, b = true};
 var b1 = g (b0);
 if b1.b then ... else ...
}

func g1 (x:A) : C {
 if x.a = 0 then ... else ...;
 return C {a = 100, b = true, c = 3.14} }
func g2 (x:C) : B { if x.c > 2.71 then ... else ...; }
func g3 (x:B) : A { return A {a = 100} }
\end{verbatim}

The call \texttt{f(g1)}, which is legal (matches the subtyping rule), works fine. The call \texttt{f(g2)}, which illegally treats the argument as covariant, fails because \texttt{f} passes a \texttt{B} (rather than a \texttt{C}) to \texttt{g2}, so the lookup \texttt{x.c} fails. The call \texttt{f(g3)}, which illegally treats the result as contravariant, fails because \texttt{g3} returns only an \texttt{A} (rather than a \texttt{B}) to \texttt{f}, so the lookup \texttt{b1.b} fails.
For the \textbf{fab} array types $\langle T \rangle$ (i.e. array of T), the safe structural subtyping rule is:

\[\langle T \rangle \subseteq \langle T \rangle \]

This rule is \textit{invariant} on the array element type.

To see why neither covariance nor contravariance is appropriate, consider the following \textbf{fab} fragments (with the definitions of A, B, C above):

\begin{verbatim}
func f (x: \langle B \rangle) { if x[0].b then ... }’

func g (x: \langle B \rangle) { x[0] = B{a = 10, b = true} } }

var wa = A {a = 10};
var za = \langle A \rangle {1 of wa};
var wc = C {a = 10, b = true, c = 3.14};
var zc = \langle C \rangle {1 of wc}
\end{verbatim}
Clearly we cannot let subtyping be \textbf{contravariant} in T: if it were, the call $f(za)$ would be legal, but it would fail when f tries to look up the b component.

But also, we cannot let subtyping be \textbf{covariant} in T. If it were, the sequence

$$g(zc);$$
$$\text{if } (zc[0].c > 2.71) \text{ then ... else ...}$$

would be legal. But this sequence fails because g updates the 0’th element of zc to contain a B rather than a C; after the return the lookup of $zc[0].c$ fails.

Note that Java actually \textbf{does} permit covariant subtyping of arrays. To avoid safety problems, every store into an array (of reference types) – such as the assignment in g – is checked at \textbf{runtime} to ensure that the stored value is of the same type as the array. So in this example, calling $g(zc)$ would pass the type checker but generate a checked runtime error (exception).