
CS321 Languages and Compiler Design I
Winter 2012
Lecture 13

1



STATIC SEMANTICS

Static Semantics are those aspects of a program’s meaning that can be
studied at at compile time (i.e., without running the program).

Contrasts with Dynamic Semantics , which describe how the program
behaves at run-time.

Uses for static semantics include:

• Checking validity of input programs to prevent malfunctions at run-time

— e.g., all variables and functions that are used in a program have been
defined; correct number and type of arguments are passed to functions,
operators, etc.

• Clarifying potential ambiguities about what code does at run-time

— e.g., distinguish between different uses of the same variable name
(e.g., global and local) or same symbol (e.g., arithmetic operations on
different numeric types).

• Justifying optimizations in code generator

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 2



STATIC /SEMANTIC ANALYSIS

(Static) Semantic analysis refers to the phases of a compiler that are
responsible for checking that input programs satisfy the static semantics.

• Static analysis comes after parsing; the structure of a program must be
understood before it can be analyzed.

• Static analysis comes before code generation; there’s no point
generating code for a “bad” program.

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 3



STATIC APPROXIMATES DYNAMIC

In any interesting language, there are aspects of a program’s behavior
that cannot be determined at compile-time, because of

• Unknown values (e.g. run-time user input)

• Uncomputable problems (e.g. implied by the halting problem)

If we want to check the static semantics of a program at compile-time,
then we will have to accept a conservative approximation .

Conservative: rejecting programs that might actually be ok, rather than
allowing programs that might actually fail.

Approximation: static semantics can tell us something about the result of
a computation, but doesn’t guarantee to predict every detail.

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 4



APPROXIMATION EXAMPLES

Consider these program fragments:

• y = 6; x = y * 7;

We know that the result of x will be 42, but static semantics might ensure
only that x will be an integer.

• x = (true ? 40 : "Hello") + 2;

We know that the result of x will be 42, but static semantics might
suggest that the program “could” cause a type error

• int y; if (x*x>=0) y=x;

We know that y will be initialized by this code, but static semantics could
suggest that y “might not” be initialized.

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 5



TYPES AND TYPES SAFETY

We focus on the approximation of run-time values by compile-time types .

In particular, a static type system associates a type with each program
identifier (variable, parameter, function, etc.) and expression. The static
semantics checks that programs are formed in ways that make sense
based on types, e.g.

x := x + y; /* valid if x,y both numeric types */

x := y; /* valid if x, y have same type */

x := y[10]; /* valid if y is an array containing

values of type x */

In a type-safe language , programs that have no type errors are
guaranteed not to have (certain kinds of) runtime errors. This is a huge
benefit of using types.

Type information is typically also used by the compiler to figure out how
to generate code. For example, the code generated for the above
statements may be different depending on whether x,y are integers,
floats, strings, etc.

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 6



VALUES AND TYPES

Values are the entities or objects manipulated by programs.

We divide the universe of values according to types .

We characterize types by:

• A set of values.

• A set of operations defined on those values

• How values are represented and operations are implemented .

• Whether values are mutable or immutable .

• In what contexts values are permitted.

• How literal values are described.

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 7



EXAMPLES OF TYPES

Integers with the usual arithmetic operations.

Booleans with operators and,or,not and valid as arguments to
conditional operations.

Arrays with operations like fetch and store.

Functions with the “call” operation.

Sets with operations like membership testing, union, intersection, etc.

Object-oriented classes with constructor operations and member
methods.

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 8



HARDWARE TYPES

Machine language doesn’t distinguish types; all values are just bit
patterns until used . As such they can be loaded, stored, moved, etc.

But certain operations are supported directly by hardware; the operands
are thus implicitly typed.

Typical hardware types:

• Integers of various sizes, signedness, etc. with standard arithmetic
operations.

• Booleans with boolean and conditional operations. (Usually just a
special view of integers.)

• Floating point numbers of various sizes, with standard arithmetic
operations.

• Pointers to values stored in memory.

• Instructions , i.e., code, which can be executed.

Details of behavior (e.g., numeric range) are machine-dependent ,
though often subject to standards (e.g., IEEE floating point).

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 9



ATOMIC VALUES AND TYPES

The representation of atomic values is opaque to user-defined code;
programs cannot “see inside” them.

Many of the primitive types that are built into languages are atomic, e.g.
integers, floats, characters, booleans, etc.

Usually closely allied to hardware types.

Example: booleans. Note that in most languages (except C/C++), this is
a different type from integers, even though boolean values may be
represented internally by integers.

Numeric types only approximate behavior of true numbers. Also, they
often inherit machine-dependent aspects of machine types, causing
serious portability problems.

Example: Integer arithmetic in most languages is really fixed-word
arithmetic which can silently overflow.

Atomic types might also be user-defined, e.g. enumerations.

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 10



COMPOSITE VALUES

Composite values are constructed from more primitive values, which
can usually later be selected back from the composite, and perhaps
selectively updated .

Example: Records (C Syntax)

struct emp {

char *name;

int age;

};

struct emp e = {"Andrew",99};

if (strcmp(e.name,"Fred")) ...;

e.age = 88;

It is typically necessary to declare new composite types (e.g., struct
emp) before defining composite values (e.g., e). The type definition
indicates how the type is constructed from more primitive types, using
one of a few predefined type constructors .

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 11



TYPE CONSTRUCTORS

Programmers usually define composite types in order to implement data
structures appropriate to an application and/or algorithm.

Abstractly, such data structures can be seen as mathematical operators
on underlying sets of simpler values. A small number of type operators
suffices to describe most useful data structures:

• Cartesian product (S1 × S2)
• Disjoint union (S1 + S2)
• Mapping (by explicit enumeration or by formula) (S1 → S2)
• Set (PS)
• Sequence (S∗)
• Recursive structures (lists, trees, etc.)

Concretely , each language defines the internal representation of
values of the composite type, based on the type constructor and the
types used in the construction.

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 12



REPRESENTATION OF DATA STRUCTURES

Historically, most languages provide direct representations only for a few
data structures, usually those whose values can be represented
efficiently on a conventional computer. Often, they are restricted so that
all values will be of fixed size .

For conventional languages, this is the short list:

• Records.

• Unions.

• Arrays.

Many languages also support manipulation of pointers to values of these
types, in order to allow moving data “by reference” and to support
recursive structures; more later.

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 13



RECORDS = CARTESIAN PRODUCTS

Records, tuples, “structures”, etc. Nearly every language has them.

“Take a bunch of existing types and choose one value from each.”

Examples (Ada Syntax)

type EMP is

record

NAME : STRING;

AGE : INTEGER;

end record;

E: EMP := (NAME => "ANDREW", AGE => 99);

(ML syntax):

type emp = string * int (unlabeled fields)
val e : emp = ("ANDREW",99);

type emp =

{name: string, age: int} (labeled fields)
val e : emp = {name="ANDREW",age=99};

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 14



RECORDS (CONTINUED)

Standard operations: construction, selection, selective update.

Representation: Usually as described above. Because records may be
large, they are often manipulated by reference, i.e., represented by a
pointer. The fields within a record may also be represented this way.

Allowed contexts: In many languages, treated like primitive values, e.g.,
can be assigned as a unit, passed to or returned by functions, etc. But
since they may be large, some languages add restrictions.

Literals: Most languages allow a literal record to be specified by
specifying each component, either by position or by name. (But C doesn’t
permit literals except as initializers.) Some languages require
components to be initialized after creation.

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 15



DISJOINT UNIONS

Variant records, discriminated records, unions, etc.

“Take a bunch of existing types and choose one value from one type.”

Pascal Example:

type RESULT = record

case found : Boolean of

true: (value:integer);

false: (error:STRING)

end;

function search (...) : RESULT;

...

Generally behave like records, with tag as an additional field.

Represented by the variant’s representation, usually plus a tag (thus
forming a record). Size typically equals the size of the largest variant plus
tag size.

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 16



VARIANT INSECURITIES

Pascal variant records are insecure because it is possible to manipulate
the tag independently from the variant contents.

tr.value := 101;

write tr.error;

if (tr.found) then begin

...

tr := tr1;

x := tr.value

These problems were fixed in Ada by requiring tag and variant contents
to be set simultaneously, and inserting a runtime check on the tag before
any read of the variant contents.

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 17



NON-DISCRIMINATED UNIONS

C unions don’t even have a tag mechanism: the programmer must provide
the tag separately:

union resunion {

int value;

char *error;

};

struct result {

int found; /* boolean tag */

union resunion u;

}

struct result search (...);

Since the connection between tag and union value is informal, this is
completely unsafe.

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 18



DISJOINT UNIONS DONE PROPERLY

ML has very clean approach to building and inspecting disjoint unions:

datatype result = FOUND of integer | NOTFOUND of string

fun search (..) : result =

if ... then FOUND 10 else NOTFOUND "problem"

case search(...) of

FOUND x =>

print ("Found it : " ^ (Int.toString x))

| NOTFOUND s =>

print ("Couldn’t find it : " ^ s)

Here FOUND and NOTFOUND tags are not ordinary fields. Case combines
inspection of tag and extraction of values into one operation.

Object-oriented languages like Java don’t support disjoint unions directly,
but subclasses provide a (somewhat awkward) way to achieve the same
effect. (More later.)

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 19



ARRAYS AND MAPPINGS

Basic implementation idea: a table laid out in adjacent memory locations
permitting indexed access to any element using the hardware’s ability to
compute memory addresses.

Mathematically: A finite mapping from index set to component set .

Index set is nearly always a set of integers 0..n, where n is small
enough to allow space for the entire array, or some other small discrete
set isomorphic to them.

Pascal Example:

type day = (Sunday, Monday, ..., Saturday);

var workday = array[day] of boolean;

workday[Saturday] := false;

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 20



ASSOCIATIVE ARRAYS

Arrays with arbitrary index sets are sometimes called associative arrays .

More general index sets are seldom supported directly by language
because of the lack of a single, uniform, good implementation.

Awk Example:

workday["Saturday"] = false;

workday["Sunday"] = false;

How might this be implemented?

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 21



ARRAY SIZE

Is the size of an array part of its type? Some older languages (e.g.
Fortran) took this attitude, but most modern languages are more flexible,
and allow the size to be set independently for each array value when the
array is first created:

• as a local variable, e.g., in Ada:

function fred(size:integer);

var bill: array(0..size) of real;

• or on the heap, e.g., in Java:

int[] bill = new int[size];

Arrays are often large, and hence better manipulated by reference.

Major security issue for arrays is bounds checking of index values. In
general, it’s not possible to check all bounds at compile time (though
often possible in particular cases).

Runtime checks are always possible, although they may be costly. But
they are essential for type safety, which is a huge benefit!
PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 22



FUNCTIONS AND MAPPINGS

Mathematical mappings can also be represented by an algorithmic
formula .

A function gives a “recipe” for computing a result value from an
argument value.

A program function can describe an infinite mapping.

But differs from mathematical function in that:

• it must be specified by an explicit algorithm

• executing the function may have side-effects on variables.

It can be very handy to manipulate functions as first-class values. But
most languages put severe limitations on what can be done with
functions.

How does one represent a function as a first-class value? In some
languages, can just use a code pointer . In others, representation must
include values of free variables , which can affect runtime peroformance.
More on this later.

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 23



SEQUENCES

What about data structures of essentially unbounded size, such as
sequences (or lists )?

“Take an arbitrary number of values of some type.”

Such data structures require special treatment: they are typically
represented by small segments of data linked by pointers, and dynamic
storage allocation (and deallocation) is required.

The basic operations on a sequence include

• concatenation (especially concatenating a single element onto the
head or tail of an existing sequence); and

• extraction of elements (especially the head).

An important example is the (unbounded) string , a sequence of chars.

Best representation depends heavily on what nature and frequency of
various operations. Hard to give single, uniformly efficient
implementation. So many older languages don’t support directly. But so
useful that newer languages increasingly do (esp. strings).

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 24



DEFINING SEQUENCES

Unless the programming language supports sequences directly, the
programmer must define them using a recursive definition.

For example, a list of integers is either

• empty , or

• has a head which is an integer and tail which is itself a list of integers.

ML has particularly clean mechanisms for describing recursive types.

datatype intlist = EMPTY | CELL of int * intlist

Internally, the non-empty case can be represented by a two-element
heap-allocated record, containing an integer and a pointer to another list.
(Obviously, the tail list itself cannot be embedded in the record, since it’s
size is unknown.) The empty case is conveniently represented by a null

pointer. Corresponds directly to C representation:

typedef struct intlist *Intlist;

struct intlist { int val; Intlist next; };

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 25



PROCESSING SEQUENCES: ITERATION OR RECURSION

/* Iterative version */

int inlist(Intlist list, int i) {

while (list) {

if (list->val == i)

return 1;

else

list = list->next;

};

return 0;

}

/* Recursive Version */

int inlist(Intlist list, int i) {

if (list) {

if (list->val == i)

return 1;

else

return inlist(list->rest,i);

} else

return 0;

}

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 26



RECURSIVE TYPES

Recursion can be used to define and operate on more complex types, in
which the type being defined appears more than once in the definition.

ML Example: binary trees with integer labels (only) at the leaves.

datatype tree =

INTERNAL of {left:tree,right:tree}

| LEAF of {contents:int}

Now we must use recursion (not iteration) to process the full tree:

fun sum(tree: tree) =

case tree of

INTERNAL{left,right} =>

sum(left) + sum(right)

| LEAF{contents} => contents

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 27



VALUES AND REFERENCES

What does the assignment x := y actually do at runtime?

If x,y are integers, they are probably stored as 32-bit words, and
assignment simply copies the word from one memory location (or
machine register) to another.

If x,y belong to a constructed type (record, array), they are probably
stored as a block of words. Assignment might still be defined as
copying...

For example, C defines assignment for structs this way, so the program

struct emp { char* name; int age; }

emp e1;

e1.age = 91;

emp e2 = e1;

e1.age = 18;

printf("%d %d", e1.age, e2.age);

prints 18, 91.

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 28



VALUES AND REFERENCES (2)

But copying large numbers of words is expensive. Moreover, it is difficult
to compile such copies if the size of the value is not statically known.

This is particularly true for recursive structures, which naturally grow
without fixed bound (and are commonly allocated on the heap ).

So many languages represent and manipulate (at least some) composite
types by reference . That is, a value of such a type is actually a pointer
to the data, and assignment is just a shallow copy of the pointer.

For example, a similar Java program:

class emp { String name; int age; }

emp e1;

e1.age = 91;

emp e2 = e1;

e1.age = 18;

System.out.print(e1.age + " " + e2.age);

prints 18, 18.

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 29



EXPLICIT POINTERS

Many older languages have pointer types to enable programmers to con-
struct recursive data structures, e.g., in C:

typedef struct intlist *Intlist;

struct intlist {

int head;

Intlist tail;

}

Intlist mylist = (Intlist) malloc(sizeof(struct intlist));

...free(mylist)...

Note that programmers must make explicit malloc (C++: new) and free

calls to manage heap values, and must explicitly manipulate pointers.

Lots of opportunity for dangling pointer bugs (failing to realize that a
pointer is no longer valid after freeing) and memory leaks (failing to free
a pointer when it is no longer needed)!

A language that allows dangling pointers cannot have a safe type system!

(Full type safety story in C/C++ is even worse...)

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 30



AUTOMATED HEAP MANAGEMENT

Many modern languages, such as Java and ML, implicitly allocate
space for composite values (records, disjoint unions, arrays) on the heap.

All such values are represented by references (pointers) into the heap,
but programmers can’t manipulate the pointers directly. In particular, they
can’t explicitly deallocate records (or objects) from the heap.

Instead, these languages provide automatic garbage collection of
unreachable heap values, thus avoiding both dangling pointer and
memory leak bugs.

Garbage collection may add some overhead over manual memory
management (though not necessarily). But it allows these languages to
be type-safe , which is a huge benefit.

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 31



DYNAMIC TYPING

Some high-level languages take a different approach to catching bad
uses of values: instead of detecting them statically, they check for them
explicitly at runtime .

For example, before performing an operation like x+y, the program will
check to make sure that x and y contain numeric values. If not, the
runtime system will issue an informative error message and halt the
program (or at least raise an exception). (Note: this is not the same as
crashing with no warning!)

This so-called dynamic typing occurs in Lisp, Scheme, Smalltalk, VB,
JavaScript, etc.

• Values carry tags corresponding to their (current) type.

• The type associated with identifiers can vary dynamically as the
program runs.

• Correctness of operations can’t generally be checked until runtime.

• Program incurs overhead for tagged representations and checking.

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 32



FLEXIBILITY OF DYNAMIC TYPING

Static typing offers the great advantage of catching errors early , and
generally supports more efficient execution.

So why ever settle for dynamic typing?

• Simplicity. For short or simple programs, it’s nice to avoid the need for
declaring the types of identifiers.

• Flexibility. Dynamic typing allows container types, like lists or arrays, to
contain mixtures of values of arbitrary types.

Note: Some statically-typed languages offer alternative ways to achieve
these aims, via type inference and polymorphic typing . (More later.)

PSU CS321 W’12 LECTURE 13 c© 1992–2012 ANDREW TOLMACH 33


