
CS 321 Homework 4 – due 1:30pm, Thursday, March 15, 2012

This homework specification is copyright 2002-2012 by Andrew Tolmach. All rights reserved.

Typechecking

In this assignment, you will build a type-checker for thefab AST structures you built in assignment
3. To do this, you’ll process declarations to extract type information about identifiers and process
statements and expressions to make sure that identifiers andliterals are used correctly.

Your typechecker should detect all semantic errors, including:

• incompatible or illegal operand types in expressions, statements, or declarations;

• uses of undefined symbols;

• multiple declarations of a symbol within a single scope;

• attempting to assign to an identifier declared as being constant;

• incorrect number or types of arguments in a function call;

• exit statements in inappropriate contexts;

• return statements in inappropriate contexts, or lacking a return value when one is required
or vice-versa;

• ill-formed record type definitions

Do not attempt to check that array references are within bounds; ingeneral, this cannot be done
until runtime.

As an (important!) side-effect, your typechecker must fill in thetype field of allExp andLValue
nodes, and of anyVarDec andConstDec nodes where the concrete program text did not already
specify a type. These type annotations will prove very useful in later stages of the compiler. They
are now displayed (when present) by the ASTtoString functions; a dash (“-”) is printed if the
type field is null.

For a modest amount ofextra credit, you may choose to include a check that functions whose return
type is notunit actually execute areturn on all possible paths through the function body. This
check will necessarily need to be conservative, i.e., you will have to reject some programs that
actually always do execute areturn. The more precise your check is, the more credit you get.
But from thefab user’s perspective, it is very important that checks of thiskind bepredictable, so
you must include an English-languagespecificationof how yourreturn-checker behaves.

Consult thefab Language Reference Manual for detailed rules about type compatibility. A full list
of the error messages that you should be able to generate is given below.

Your typechecker must be implemented within fileAst.java, as a new method in class
Ast.Program, with signature

1

void check() throws CheckError

whereCheckError is a new class withinAst, defined as follows:

public static class CheckError extends Exception {
CheckError(int line, String text) {
super("Error at line " + line + ": " + text);

}
}

If check encounters any type type error in the program, it should throw aCheckError excep-
tion with the line number at which the error occurs and a suitable explanatory message. Otherwise
it should simply return silently.

Here’s the driver that will be used to test your checker:

class CheckDriver {
public static void main(String argv[]) throws Exception {
try {

Parser parser_obj = new Parser(new Scanner(System.in));
Ast.Program prog = (Ast.Program) parser_obj.parse().value;
prog.check();
System.out.println(prog);

} catch (ParseError exn) {
System.err.println(exn.getMessage());

} catch (Ast.CheckError exn) {
System.err.println(exn.getMessage());

}
}

}

As usual, the “correct” behavior of the the typechecker is more precisely specified by the behavior
of the reference checker embedded in theWorkingChecker.jar file available on the web
page. (To run this checker code, you should includeWorkingChecker.jar in your classpath.)
The type-annotated AST produced by your checker, and printed by the driver above, should be
the same as the reference checker. Your checker should issueerrors whenever (and only when!)
the reference checker does so. The text of your error messages and the associated line numbers
do not have to match the reference checker exactly, but they should convey essentially the same
information.

The reference parser includes a simple version of the extra-credit check forreturn statements,
which considers all control paths through the program assuming that nothing is known about the
value of any boolean expression.

2

Errors Generated

Here is a list of all the error messages the reference parser generates. Most are self-evident; ex-
planatory comments are given for a few.

• Identifier name is not defined

This applies to type names in declarations and record and array constructors; l-values; and
’for’-loop indices.

• Identifier name is already defined (at line linenum)

This applies to record type definitions, variables, parameters, and function names. No iden-
tifier can be defined more than once at a given scope level.

• Identifier name is a type name and cannot be redefined

• Identifier name is not a type name

This applies to type names in declarations and array constructors.

• Identifier name is a built-in name and cannot be redefined

• Variable initialized to ’nil’ must have explicit type
constraint

• Constant initialized to ’nil’ must have explicit type
constraint

• Type of initializing expression (type1) does not match
declared type (type2)

• Duplicate field name name in record type declaration

• Cycle in record inheritance hierarchy

• Assignment LHS type (type1) does not match RHS type (type2)

• Function called in statement context must not return a value

Applies to function call statements.

• Function called in expression context must return a value
Applies to function call expressions.

• Function with return type type might not execute ’return’
statement

Apply to function call expressions. (Generate these for extra credit.)

• Call to expression of non-function type

• Wrong number of arguments provided

3

• Argument type (type1) does not match declared type (type2) for
parameter name

• ’read’ statement argument has type type; must be ’integer’ or
’real’

• ’write’ statement argument has type type; must be ’integer’,
’real’, ’boolean’, or string

• Expression after ’if’ or ’elsif’ has type type; must be
’boolean’

• Expression after ’while’ has type type; must be ’boolean’

• Index of ’for’ statement has type type; must be ’integer’

• Expression in ’for’ statement has type type; must be ’integer’

• ’exit’ statement is not inside a ’while’, ’loop’, or ’for’
statement

• ’return’ statement not allowed in Main program body

• ’return’ expression type (type) does not match declared
procedure return type (type)

• ’return’ missing result expression of type type

• ’return’ from function with result type ’unit’ does not allow
result expression

• Operand has type type; must be ’integer’ or ’real’

Applies to various arithmetic operators.

• Operand types (type1,type2) do not match

• Functions cannot be compared for equality

Apply to = and<> operators.

• Operand has type type; must be ’integer’

Applies to various arithmetic operators.

• Operand has type type; must be ’boolean’

Applies to various boolean operators.

• Array initializer count has type type; must be ’integer’

• Type of array initializer value (type1) does not match
declared array element type (type2)

4

• Identifier name is not a record type name

Applies to record constructors andextends clauses in record type definitions.

• Record initializer expression has missing field(s)

• Repeated field name in record initializer

• Type of expression (type1) does not match type of field name
(type2)

• Undefined field name in record initializer

• Identifier name is not accessible in nested function

Applies to non-const parameters and locals declared in an outer enclosing function.

• Identifier name cannot be assigned to

• Identifier name is not a variable

Apply to l-values being assigned into.

• Identifier name is not a value

Applies to l-values being dereferenced for their contents.

• Array subscript expression has type type; must be ’integer’

• Subscripted expression is not an array

• Field name does not appear in this record type

• Dereferenced expression does not have record type

Implementation and Program Submission

The file Ast0.java on the course web page section for this assignment defines Astclasses
very similar to theAst.java file provided for homework 3, but also contains the skeleton of a
typechecker that supports partial checking offab. You arestronglyurged (though not required) to
use this code as the basis of your own checker.

The skeleton checkeromitssupport for the following language features: all aspects ofboolean
types; all aspects of arrays; most aspects of function declarations;read, if, while, andexit
statements; all operators except forPLUS, MINUS, TIMES, andSLASH; and call expressions. To
implement the missing features requires about 100 lines of new code. Most (but not all) places
where you need to add code are marked with a commentNOT IMPLEMENTED. You may want to
change the signatures of some of the existing routines too.

In its present form, the skeleton checker will process the whole fab language without throwing any
uncaught exceptions, but not correctly! In most cases, it will err by not issuing an error message
where one is needed. In some cases it will issue inappropriate error messages (e.g., when the

5

program mentionstrue or false, or when the skeleton checker incorrectly returns the type of
an expression asinteger t) or assumes that every function type has an empty argument list.

Here are few notes on the design of this checker;

• The checker maintains an environment of all the identifiers currently in scope, implemented
as a linked list of theBinding objects;TypeBindings describe record types and the
built-in types, andValBindings describe variables, parameters, functions, and built-in
constants.

• Each identifier in the environment has an associatedlevel number, which indicates how
deeply its declaration is nested. Built-in identifiers are at level 0; record types are at level 1;
top-level identifiers are at level 2; identifiers defined within a top-level function are at level
3; identifiers defined within a level 3 function are at level 4;etc.

• Sincefab primarily uses structural type equivalence, we need a structural representation of
types. The checker uses the existingTypeExp AST class for this purpose; objects of this
class must be synthesized by the checker at the few places where they don’t appear in the
source program already. Named types can be compared by doingstring compares on the
names.

• In addition to the user-visible built-in types (e.g.,’integer’), it is convenient to define a
few “internal” built-in types (e.g., for strings). To avoidpossible clashes with user-defined
type names, these internal names begin with a character (?) that is illegal in concrete syntax
identifiers.

• TheTypeExpmember functionsequiv to andsubtype of answer whether the receiv-
ing object is structurally equivalent to, or a subtype of, the argument object. In most cases,
subtype of is the correct test to apply.

Your revisedAst.java file should be submitted as a plain text attachment to a mail message sent
to cs321-03@cecs.pdx.eduwith subject line prfix “[hw4]”. Be sure to include your name
in a comment within your submitted code file. Your code must work correctly with the provided
(assignment 4) versions ofCheckDriver.java, ParseError.java, Symbol.java,
Scanner.java, Yylex.class, Parser.class, CUP$Parser$actions.class, and
SymKinds.class.

6

