CS 321 Homework 4 — due 1:30pm, Thursday, March 15, 2012
This homework specification is copyright 2002-2012 by Amdii®Imach. All rights reserved.

Typechecking

In this assignment, you will build a type-checker for fab AST structures you built in assignment
3. To do this, you'll process declarations to extract tyderimation about identifiers and process
statements and expressions to make sure that identifielgenads are used correctly.

Your typechecker should detect all semantic errors, inotyd

e incompatible or illegal operand types in expressionsestants, or declarations;
e uses of undefined symbols;

e multiple declarations of a symbol within a single scope;

e attempting to assign to an identifier declared as being aatist

e incorrect number or types of arguments in a function call;

e exit statements in inappropriate contexts;

e 1 et ur n statements in inappropriate contexts, or lacking a retalmeawvhen one is required
or vice-versa,;

e ill-formed record type definitions

Do not attempt to check that array references are within boundgeireral, this cannot be done
until runtime.

As an (important!) side-effect, your typechecker musttilhet ype field of all Exp andLVal ue
nodes, and of anyar Dec andConst Dec nodes where the concrete program text did not already
specify a type. These type annotations will prove very useflater stages of the compiler. They
are now displayed (when present) by the AISISt r i ng functions; a dash) is printed if the
type field is null.

For a modest amount ektra credit you may choose to include a check that functions whoserretur
type is notuni t actually execute aet ur n on all possible paths through the function body. This
check will necessarily need to be conservative, i.e., yduhave to reject some programs that
actually always do executeraet ur n. The more precise your check is, the more credit you get.
But from thefab user’s perspective, it is very important that checks of kinsl bepredictable so
you must include an English-languagjgecificatiorof how yourr et ur n-checker behaves.

Consult thdab Language Reference Manual for detailed rules about typgathility. A full list
of the error messages that you should be able to generateeis lgelow.

Your typechecker must be implemented within fdst.j ava, as a new method in class
Ast . Pr ogr am with signature

voi d check() throws CheckError
whereCheckEr r or is a new class withilst , defined as follows:

public static class CheckError extends Exception {
CheckError(int line, String text) {
super("Error at line " + line + ": " + text);

}
}

If check encounters any type type error in the program, it shouldita@€heckEr r or excep-
tion with the line number at which the error occurs and a bletaxplanatory message. Otherwise
it should simply return silently.

Here’s the driver that will be used to test your checker:

cl ass CheckDriver {
public static void main(String argv[]) throws Exception {

try {
Parser parser_obj = new Parser(new Scanner (Systemin));
Ast . Program prog = (Ast.Program parser_obj.parse().val ue;
prog. check();
System out. println(prog);

} catch (ParseError exn) {
Systemerr.println(exn. get Message());

} catch (Ast.CheckError exn) {
Systemerr. println(exn. get Message());

}
}
}

As usual, the “correct” behavior of the the typechecker isanecisely specified by the behavior
of the reference checker embedded in W& ki ngChecker . j ar file available on the web
page. (To run this checker code, you should incMdeki ngChecker . j ar in your classpath.)
The type-annotated AST produced by your checker, and prinyethe driver above, should be
the same as the reference checker. Your checker shouldessure whenever (and only when!)
the reference checker does so. The text of your error messagkthe associated line numbers
do not have to match the reference checker exactly, but theyld convey essentially the same
information.

The reference parser includes a simple version of the exédit check for et ur n statements,
which considers all control paths through the program agsyithat nothing is known about the
value of any boolean expression.

Errors Generated

Here is a list of all the error messages the reference paesargtes. Most are self-evident; ex-
planatory comments are given for a few.

e ldentifier nameis not defi ned

This applies to type names in declarations and record amag aonstructors; I-values; and
" for’ -loop indices.

e ldentifier nameis already defined (at |ine linenum

This applies to record type definitions, variables, paransetand function names. No iden-
tifier can be defined more than once at a given scope level.

e ldentifier nameis a type nane and cannot be redefined

e ldentifier nameis not a type nane
This applies to type names in declarations and array cariets

e ldentifier nameis a built-in nane and cannot be redefi ned

e Variable initialized to "nil’ nust have explicit type
constrai nt

e Constant initialized to "nil’ nust have explicit type
constrai nt

e Type of initializing expression (typg) does not match
decl ared type (type)

e Duplicate field name namein record type declaration
e Cycle in record inheritance hierarchy
e Assignnment LHS type (type) does not match RHS type (typs)

e Function called in statenent context nust not return a val ue
Applies to function call statements.

e Function called in expression context nust return a val ue
Applies to function call expressions.

e Function with return type type m ght not execute 'return’
st at enent

Apply to function call expressions. (Generate these foraesttedit.)
e Call to expression of non-function type

e Wong nunber of argunents provided

3

e Argunent type (typa) does not match declared type (typs) for
par anet er name

e 'read’ statenent argument has type type nust be ’'integer’ or
"real’

e 'Wite statenent argunent has type type nust be 'integer’,
"real’, ’'boolean’, or string

e Expression after if’ or ’elsif’ has type type nust be
" bool ean’

e Expression after 'while’ has type type nust be ’'bool ean’
e Index of "for’ statenent has type type nust be ’integer’

e Expression in 'for’ statenent has type type nust be ’'integer’

e 'exit’ statenment is not inside a "while, "loop , or ’'for

st at enent
e 'return’ statenment not allowed in Miin program body

e 'return’ expression type (type does not match decl ared
procedure return type (type

e 'return’” mssing result expression of type type

e 'return’ fromfunction with result type 'unit’ does not allow
result expression

e Operand has type type nust be ’integer’ or ’'real’
Applies to various arithmetic operators.

e Operand types (type, type) do not natch

e Functions cannot be conpared for equality
Apply to = and<> operators.

e Operand has type typg nust be ’'integer’
Applies to various arithmetic operators.

e Operand has type typg nust be ' bool ean’
Applies to various boolean operators.

e Array initializer count has type type nust be ’'integer’

e Type of array initializer value (typg) does not natch
decl ared array el enent type (type)

4

e Ildentifier nameis not a record type nanme
Applies to record constructors arat ends clauses in record type definitions.

e Record initializer expression has mssing field(s)
e Repeated field namein record initializer

e Type of expression (typg) does not nmatch type of field name
(type)

e Undefined field namein record initializer

e Identifier nameis not accessible in nested function
Applies to noneonst parameters and locals declared in an outer enclosing mcti

e I dentifier namecannot be assigned to

e ldentifier nameis not a variable
Apply to I-values being assigned into.

e Identifier nameis not a val ue
Applies to |-values being dereferenced for their contents.

e Array subscript expression has type type nust be 'integer’
e Subscripted expression is not an array
e Field namedoes not appear in this record type

e Dereferenced expressi on does not have record type

Implementation and Program Submission

The file Ast 0. j ava on the course web page section for this assignment definesldstes
very similar to theAst . j ava file provided for homework 3, but also contains the skeletba o
typechecker that supports partial checkindadf. You arestronglyurged (though not required) to
use this code as the basis of your own checker.

The skeleton checkamitssupport for the following language features: all aspectsad| ean
types; all aspects of arrays; most aspects of function ceaas;r ead, i f, whi | e, andexi t
statements; all operators except RrUS, M NUS, TI MES, andSLASH; and call expressions. To
implement the missing features requires about 100 lineswf code. Most (but not all) places
where you need to add code are marked with a comik@ént | MPLEMENTED. You may want to
change the signatures of some of the existing routines too.

In its present form, the skeleton checker will process theletab language without throwing any
uncaught exceptions, but not correctly! In most cases,litasi by not issuing an error message
where one is needed. In some cases it will issue inapprepeiabr messages (e.g., when the

5

program mentionsr ue or f al se, or when the skeleton checker incorrectly returns the tyfpe o
an expression asnt eger _t) or assumes that every function type has an empty argunsént li

Here are few notes on the design of this checker;

e The checker maintains an environment of all the identifiersantly in scope, implemented
as a linked list of theBi ndi ng objects; TypeBi ndi ngs describe record types and the
built-in types, andval Bi ndi ngs describe variables, parameters, functions, and built-in
constants.

e Each identifier in the environment has an associdedel number, which indicates how
deeply its declaration is nested. Built-in identifiers arkegel O; record types are at level 1;
top-level identifiers are at level 2; identifiers defined with top-level function are at level
3; identifiers defined within a level 3 function are at leveét.

e Sincefab primarily uses structural type equivalence, we need atstraicrepresentation of
types. The checker uses the existihgpeExp AST class for this purpose; objects of this
class must be synthesized by the checker at the few place® wiey don't appear in the
source program already. Named types can be compared by siving compares on the
names.

¢ In addition to the user-visible built-in types (e.gi,nt eger’), it is convenient to define a
few “internal” built-in types (e.g., for strings). To avombssible clashes with user-defined
type names, these internal names begin with a charéttehdt is illegal in concrete syntax
identifiers.

e TheTypeExp member functionequi v_t o andsubt ype_of answer whether the receiv-
ing object is structurally equivalent to, or a subtype o& #mgument object. In most cases,
subt ype_of is the correct test to apply.

Your revisedAst . j ava file should be submitted as a plain text attachment to a mabage sent
tocs321- 03@ecs. pdx. edu with subject line prfix f hw4] ”. Be sure to include your name
in a comment within your submitted code file. Your code mustknaorrectly with the provided
(assignment 4) versions dtheckDri ver.java, ParseError.java, Synbol .| ava,
Scanner . j ava, Yyl ex. cl ass, Parser. cl ass, CUP$Par ser $acti ons. cl ass, and
SynKi nds. cl ass.

