CS 321 Homework 3 — due 1:30pm, Thursday, March 1, 2012
This homework specification is copyright 2010-12 by Andresinfach. All rights reserved.

Parsing

Write a parser for the completab language. The defining grammar fab is in Section 13 of the
Language Reference Manual; a copy is also available on thegpage in the fileoncr et e. t xt .
Use this grammar as a guideline for writing your parser.

Your parser must be implemented using @4P parser generator to produc®ar ser class. The
generated parser will use the lexical analyzer from homk&deither your own or the reference
version provided) to obtain a sequenceSyitbol objects representing the tokens of a supposed
fab program. If the token stream represents a syntacticallgl Ipgpgram, your parser should
generate the corresponding abstract syntax tree; otherivehould throw an appropriate instance
of thePar seEr r or exception. The provided filBar ser Dr i ver illustrates how théar ser
class can be used (and how it will be tested for grading thisdweork).

The provided fileAst . j ava defines classes for representing the various kinds of nadab-i
stract syntax trees fdab programs. (These classes are defined as inner classesAstagghis

IS just a convenient way to organize a large number of relek@skes.) You must build appro-
priate trees of AST nodes for all syntactically ledab programs. More precisely, your parser
should produce exactly the same AST as the reference pameded in filesPar ser . cl ass,
CUPS$Par ser $act i ons. cl ass, andSynKi nds. cl ass; more details about this are given
below. Thet oSt ri ng() methods defined on all AST node classes can be used to ob&daala r
able, printable representation of the AST in a standardimedat, suitable for making comparisons
between parser implementations. For syntactically iov@b programs, your parser must raise
an exception on the first syntax error discovered; it shooldattempt error recovery. The text
associated with your parser’s exceptions need not matatetbeence parser exactly.

The “correct” form of the parser’s output, i.e., the corn@epping from concrete to abstract syntax,
is defined by the behavior of the reference parser. In mossc#sis behavior should be obvious;
here are a few noteworthy points:

1. The AST is capable of describing programs that are nottgpeect; type-checking will be
done in a later homework.

2. To help make error messages from such a type-checker ngdalhieach AST node contains
al i ne field; this should be the source line number associated wighconstruct. For
constructs spanning several lines, the line number cantathefirst token should be used.

3. Anul | object is permitted in only four places in the AST: in thaper _nane field of
a Recor dTypeDec (when noext ends clause is given), in the ypeExp field of a
Const Dec or Var Dec (when no type is specified), and in thet ur nVal ue field of
aRet ur nSt (for RETURN statements that do not return a value).

4. Expancel si f clauses into nestdd St structures in the AST. If thel se branch is miss-
ing from ani f , use aBl ockSt containing aBl ock with an empty statement list.

1

5. The grammar for statements is ambiguous because of pp&&imgling”’el se clauses; the
correct disambiguation is described in the Language Reter&anual, Section 12.6.

If the result type of a function is omitted, supgnedType(0, "uni t") inthe AST.
If theby clause in & or statement is omitted, supply 1 in the AST.

If the count expression is omitted in an array initialjzmpply 1 in the AST.

© & N O

The correct precedence and associativity for opera@sdcified in the Language Reference
Manual, Section 11.8.

10. Uses of variables and constants are both parsedrasval ues.

Your error messages need not match the reference versiotiyexat at a minimum they should
indicate the nature of the error and reflect the approximatiece line number at which the error
occurred.

Implementation and Program Submission

You must use theCUP parser generator to implement your parseCUP can be down-
loaded fromhttp://ww2. cs. t um edu/ proj ect s/ cup/; you want the JAR file la-
beled CUP 1la beta 20060608. The remainder of these instructions assume that
j ava- cup- 11a. j ar is in your current working directory.

To run CUP in conjunction with th&yl ex class we developed in homework 2, compile your
. cup specification file as follows (assuming a unix-like shell ieonment wherd is used to
continue a long line):

java -cl asspath java-cup-1la.jar java_cup. Main \
-parser Parser -synbols SynKinds -interface < fab.cup

This will produce filesPar ser . j ava andSynKi nds. j ava; consult theCUP documentation
for details. Use the newly provided version®fnbol . j ava, which is designed to work with
CUP, instead of the version provided in homework 2. Your Cp&rdication must define the same
terminals (symbol kinds) as were used in homework 2; thigéady done for you iri ab0. cup,
which also shows how to specify a small subset ofétrsgrammar. (Note that runnirfgab0. cup
through CUP will produce 39 warning messages about dectarednused terminals; these are to
be expected, since the part of the grammar that uses thes@ats has not been filled in yet!) It
is permitted to include code frofmab0. cup in your submitted solution.

Your parsemustgenerate an AST structure using the constructors definddtinj ava. Note

that for each node type that takes a sequence of childrem, itha variant constructor that allows
these children to be specified akiast , rather than as an array; this simplifies parsing, where the
length of the segeunce is not known ahead of time.

To compile the CUP-generated parser code in the contexedgst driver, make sure that a work-
ing solution to homework 2 (either yours or the referencetsmh) is in the current directory in file
Yyl ex. cl ass and type:

javac -classpath .:java-cup-1la.jar Parser.java \
ParserDriver.java Scanner.java Ast.java \
Par seError.java Synbol .java

To test the resulting program orfab file f 0o. f ab, type:

java -classpath .:java-cup-1la.jar ParserDriver < foo.fab

Note: To generate the reference parser for comparison pespaose the samp@avac command

line as above, but omRar ser . j ava, instead making sure that the provided reference copies of
Par ser. cl ass, CUP$Par ser $act i ons. cl ass, andSynKi nds. cl ass are in the cur-
rent directory.

You should submit a single fileab. cup containing youitCUP specification. (Remember, if you
need to define any additional auxiliary classes, you canhrhtat the top of you€UP file.) We
will process your CUP file using CUP option settings specifibdve, producin@ar ser . j ava
andSynKi nds. j ava. These will be combined with the provided files.

Your file should be submitted as a plain text attachment to al mmeessage sent to
cs321- 03@ecs. pdx. edu with subject line prefix [hw3] ”. Be sure to include your name
in a comment within your submitted code file. Your code mustknaorrectly with the provided
Par ser Dri ver, Scanner, Ast, Par seError, andSynbol classes, and with the refer-
ence version offyl ex. cl ass from homework 2. You mayot modify these classes, and you
should not submit any code for them. We will process your sabion by creating a fresh direc-
tory, copy inj ava- cup- 11a. j ar, the providedPar ser Dri ver. j ava, Scanner. j ava,
Ast . j ava, ParseError.java, Synbol . | ava, andYyl ex. cl ass files, and saving your
attachment. We will then process youcup file, compile the resulting Java code, and run the
parser driver using the incantations given above. Notewtatvill be using automated mecha-
nisms to read, compile, and test your programs, so adhetenicis naming and mailing policy is
important! As usual, you may lose points if you fail to subgour program in the correct way.

