
The fab Programming Language
Reference Manual

c© 2010-2012 Andrew Tolmach
Dept. of Computer Science
Portland State University

(version of March 13, 2012)

1 Introduction
The fab language is a small imperative programming language with first class functions, extensible record values with
implicit pointers, arrays, integer and real variables, and a few simple structured control constructs. It bears many
similarities to an earlier language, PCAT, designed by Andrew Tolmach and Jingke Li.

This manual gives an informal specification for the language. Fragments of EBNF syntax are introduced at relevant
points in the text; the complete grammar is given in Section 13.

2 Lexical Issues
fab’s character set is the standard 7-bit ASCII set. fab is case sensitive; upper and lower-case letters are not considered
equivalent.

Whitespace (blank, tab or newline characters) serves to separate tokens; otherwise it is ignored. Whitespace is
needed between two adjacent keywords or identifiers, or between a keyword or identifier and a number. However, no
whitespace is required between a number and a keyword, since this causes no ambiguity. Delimiters and operators
don’t need whitespace to separate them from their neighbors on either side. Whitespace may not appear in any token
except a string (see below).

Comments are enclosed in the pair [* and *]; they cannot be nested. Any character is legal in a comment. Of
course, the first occurrence of the sequence of characters *] will terminate the comment. Comments may appear
anywhere a token may appear; they are self-delimiting, i.e., they do not need to be separated from their surroundings
by whitespace.

2.1 Tokens
Tokens consist of keywords, literal constants, identifiers, operators, and delimiters.

The following are reserved keywords.

and by const div do else elsif
exit extends for func if loop mod
not of or read record return then
to var while write

Literal constants are either integer, real, or string. Integers (denoted INTEGER in the grammar) contain only digits;
they must be in the range 0 to 231 − 1. Reals (denoted REAL in the grammar) consist of one or more digits, followed
by a decimal point, followed by zero or more digits. There is no specific range constraint on reals, but the literal as a
whole is limited to 255 characters in length. Note that no numeric literal can be negative, since there is no provision
for a minus sign. Strings (denoted STRING in the grammar) begin and end with a double quote (") and contain any
sequence of printable ASCII characters (i.e., having decimal character codes in the range 32 – 126) except double

1

quote. Note in particular that strings may not contain tabs or newlines. String literals are limited to 255 characters in
length, not including the delimiting double quotes.

Identifiers (denoted ID in the grammar) are strings of letters and digits starting with a letter, excluding the reserved
keywords. Identifiers are limited to 255 characters in length.

The following are the operators:

@ -> := + - * / < <= > >= = <>

and the delimiters:

: ; , . () [] { }

For clarity, these are written within single quotes in the grammar.

3 Programs
program → {recordtype-decl} block

A program is the unit of compilation for fab. It consists of (optional) record type declarations and a top-level
block. It is executed by executing its top-level block and then terminating.

Each file read by the compiler must consist of exactly one program. There is no facility for linking multiple
programs or for separate compilation of parts of a program.

4 Blocks
block → ’{’ block-items ’}’
block-items → [block-item {’;’ block-item}]
block-item → declaration | statement

A block is a sequence of declarations and statements, which may be freely intermixed. It is executed by elaborating
each declaration and executing each statement in order.

5 Declarations
All identifiers occurring in a program must be introduced by a declaration, except for a small set of pre-defined
identifiers: real, integer, boolean, unit, true, false (see Section 6.2), and nil (see Section 6.5). Each
declaration serves to specify whether the declared identifier represents a type, a constant, a variable, or a function
(all of which live in a single name space) or a record component name (which live in separate name spaces; see
Section 6.5).

The only kind of types that can be declared are record types. Record type declarations occur at the beginning of
the program, are mutually recursive, and are in scope throughout the program. Description of their syntax is defered
to Section 6.5.

Variable and function declarations are local to a block and all its sub-blocks. Global declarations are simply those
that appear in the top-level block.

declaration → const-decl | var-decl | funcs-decl

The scope of a declaration extends roughly from the point of declaration to the end of the enclosing block. The
exact scope rules depend on the kind of declaration (see Sections 8 and 9). A declaration of an identifier within a nested
function hides any declarations of the same identifier in outer functions and makes them inaccessible in the scope of
the inner declaration. No identifier may be declared twice in the same function. The built-in identifiers may not be
redeclared anywhere in the program. An identifier declared as a record type name may not be redeclared anywhere in
the program.

Declaration elaboration can have computational side-effects, so the order of declarations and statements matters
even when scope is not an issue.

2

6 Types
fab is a strongly-typed language; every expression has a unique type, and types must match at assignments, calls, etc.
There is a simple notion of subtyping based on record extensions (see Section 6.5) and for the numeric types (see
Section 6.2).

The built-in basic types (see Section 6.2) and declared record types are refered to by type names. New record types
are created by record type declarations (see Section 6.5). Function and array types cannot be named; they are always
created “on the fly” by applying the type constructors -> and @, respectively, to existing types.

fab uses a mixed equivalence model for types. For records, name equivalence is used: each record type declaration
produces a new, unique type, incompatible with all the others (except possibly for subtyping). For functions and array,
structural equivalence is used: two types are equivalent if they result by applying the same constructor to equivalent
types (again, with possible subtyping).

6.1 Type Expressions
type-expr → ID

→ ’@’ type-expr
→ type-args ’->’ type-expr
→ ’(’ type-expr ’)’

type-args → ’(’ ’)’
→ type-expr
→ ’(’ type-expr {’,’ type-expr} ’)’

The function type constructor (->) is right-associative and has lower precedence than the array constructor (@).
Parentheses may be used in type expressions to alter associativity or to improve readability.

6.2 Built-in Types
There are four built-in basic types: integer, real, boolean, and unit. Integer literal constants all have type
integer, real literal constants all have type real, and the built-in values true and false have type boolean.
The type unit is used to specify the return type of functions that don’t return a useful value (similar to void in
C/C++/Java); its (sole) value cannot be denoted in programs.

integer and real collectively form the numeric types. An integer value will always be implicitly coerced
to a real value if necessary. The boolean type has no relation to the numeric types, and a boolean value cannot be
converted to or from a numeric value.

6.3 Array Types
An array is a structure consisting of zero or more elements of the same element type. An array type is written as @
followed by an expression for the element type. The elements of an array can be accessed by dereferencing using an
index, which ranges from 0 to the length of the array minus 1. The length of an array is not fixed by its type, but is
determined when the array is created at runtime. It is a checked runtime error to dereference outside the bounds of an
array.

6.4 Function Types
Function types, written with an -> constructor, describe functions taking zero or more parameters and returning a
result (possibly unit). Normally, the parameter types are written as a comma-separated list within parentheses; the
parentheses may be omitted when there is exactly one parameter. The body of a function is a block.

Functions are fully first-class in fab; that is, in addition to being called, they can also be stored in variables, arrays
or records, or returned as the result of other functions. Function declarations can appear at any level of block nesting.
Nested function bodies can reference local constants (and parameters declared as const) and functions of enclosing
blocks. They can also reference (and potentially update) variables declared in the top-level block.

3

6.5 Record Types
A record type is a structure consisting of a fixed number of components of (possibly) different types. Unlike the other
types, record types must be declared by name before they can be used.

recordtype-decl → record ID [extends ID] ’{’ [components] ’}’ ’;’
components → component {’,’ component}
component → ID ’:’ type-expr

The record type declaration specifies the name of the record type, an optional named super-type that this record
type extends, and the name and type of each component. Component names are used to initialize and dereference
components; the components for each record type form a separate namespace, so different record types may reuse the
same component names. Component names must be unique within each record type.

The special built-in value nil belongs to every record type. It is a checked runtime error to dereference a compo-
nent from the nil record.

All record types are potentially mutually recursive; that is, all record type names are in scope to define all compo-
nents of all records. Note the utility of the nil record for building values of recursive types.

A record type declaration can optionally extend another record type, called its super-type. In this case, the present
type contains all the components of the super-type in addition to the components listed. If the super-type is itself an
extension, its super-type components are included as well, and so forth. Component names must be unique across the
entire set of components. For example, given the declarations

record T{a:int}
record U extends T {b:bool}

records of type T contain a single component a:int and records of type U contain two components a:int and
b:bool. No chain of super-types may contain a cycle.

An extended type is automatically coerced to its super-type (or the super-type of its super-type, and so on) whenever
this is demanded by the context in which it is used. This makes sense because the context that wants a super-type can
just ignore the additional fields defined by the extension. But this coercion only works when one record type is
explicitly declared as the extension of another, not merely when one type has a superset of another’s components.
Given the declaration

record W {a:int,b:bool}

records of W contain the same components as those of type U, but they are not automically coerced to type T.

6.6 Subtyping
Type equivalence checks are performed “up to subtyping” so that a subtype can always be used in place of a supertype.
Subtyping is transitive: if t is a subtype of u and u is a subtype of w, then t is a subtype of w.

The two basic forms of subtyping have already been described: integers can be treated as reals, and the value of
an extended record type can be treated as having its super-type. Record subtyping is nominal: one record type is a
subtype of another only when it is explicitly declared as an extension.

For functions, fab uses a structural subtyping rule, as follows: a function type (t1,...,tn) -> t is a subtype
of (u1,...,un) -> u if t is a subtype of u and ui is a subtype of ti for each i ≤ n. Note that the subtyping
relation is covariant on the result type but contravariant on the parameter types.

Each array type has only itself as a (trivial) subtype. So the array type @t is a subtype of @u only if t = u; in
particular, it is not sufficient for t to be a subtype (or supertype) of u.

6.7 Constructed Type Values
Arrays and records are always manipulated by value, so a value of an array or record type is “really” a pointer to a
heap object containing the array or record, though this pointer cannot be directly manipulated by the programmer.
Thus, a record type that appears to contain other record types as components actually contains pointers to these types.
In particular, a record type may contain (a pointer to) itself as a component, i.e., it may be recursive.

Similarly, values of function types are also represented as heap objects, called closures (see Section 9).

4

Records, arrays, and closures have unlimited lifetimes; the heap object containing one of them exists from the
moment when its defining expression or declaration is evaluated (see Sections 11.6 11.7, and 9) until the end of the
program. In principle, a garbage collector could be used to remove heap objects when no more pointers to them exist,
but this would be invisible to the fab programmer.

7 Constants
const-decl → const ID [’:’ type-expr] ’:=’ expression

The value of the constant is given by the expression. The type declaration can be omitted whenever the type can
be deduced from the value (which is always possible except when the value is nil).

A const declaration is elaborated by evaluating the expression and associating the resulting value with the spec-
ified identifier. Note that the defining expression may refer to variables, so the value associated with the constant may
be different on each elaboration.

The scope of each declared constant begins just after the declaration; it does not include the constant’s own initial-
izing expression, so declarations are never recursive. The scope of a constant extends into any nested functions.

In addition, there are three built-in constant values: true and false of type boolean, and nil, which belongs
to every record type.

Finally, note that function formal parameters may also be marked as const (see Section 9).

8 Variables
var-decl → var ID [’:’ type-expr] ’:=’ expression

Every variable must have an initial value, given by expression. The type declaration can be omitted whenever the
type can be deduced from the initial value (which is always possible except when the initial value is nil).

A var declaration is elaborated by evaluating the initializing expression and storing the resulting value into the
specified variable.

The scope of each declared variable begins just after the declaration; it does not include the variable’s own ini-
tializing expression, so declarations are never recursive. The scope of a variable does not extend into any nested
functions.

9 Functions
funcs-decl → func func-decl {and func-decl}
func-decl → ID ’(’ [params] ’)’ [’->’ type-expr] block
params → param {’,’ param}
param → [const] ID ’:’ type-expr

Functions may or may not explicitly return a value. If they do not, they are considered to have return type unit;
in this case, the return type can be omitted altogether from the function declaration. Functions returning unit can
only be a invoked by the execution of a call statement; those that return a non-unit value can only be invoked by
evaluating a call expression and their return value becomes the value of the call expression.

A function has zero or more formal parameters, whose names and types are specified in the function declaration,
and whose actual values are specified when the function is activated. Parameters are always passed by value. A
parameter may optionally be marked as const, indicating that its value cannot be changed within the function body.

All parameters of a given function must have distinct names. The scope of a formal parameter is the function
block. The scope of parameters marked as const extends into nested functions; the scope of other parameters does
not.

The body of a function is a block. A function is activated by binding the formal parameters to the actual argument
values, executing the function’s defining block, and finally returning to the calling function. There is an implicit
return statement at the bottom of every function body.

5

Each set of functions declared following a single func keyword (and separated by and keywords) is treated as
(potentially) mutually recursive; that is, the scope of each function name begins at the point of declaration of the first
function in the set, and includes the bodies of all the functions in the set as well as the remainder of the enclosing
block.

Elaboration of a function declaration causes creation of a closure object on the heap, which contains a pointer
to the function’s code together with the values of any constants and const parameters dereferenced in the function
body that are declared in outer enclosing blocks other than the top level. Storing each constant value in the closure
allows the function body to access it even after the activation of the outer block where it was declared has terminated.
However, because the values in the closure are only copies, it does not make sense to update them; that is the reason
why variables of outer functions cannot be accessed in inner functions. The need to store values in closures and the
restriction on update do not apply to top-level variables, since these are active for the entire duration of the program.

A fab implementation may perform optimizations to avoid constructing closure objects in some circumstances,
but such optimizations will not be visible to the fab programmer.

10 L-values
An l-value is a location containing a value that can be read and perhaps updated. Constants, variables, function
parameters, record components, and array elements are all l-values. All may be updated except constants and const-
declared parameters.

lvalue → ID
→ lvalue ’[’ expression ’]’
→ lvalue ’.’ ID

The square brackets notation ([]) denotes array element dereferencing; the expression within the brackets must
evaluate to an integer expression within the bounds of the array.

The dot notation (.) denotes record component dereferencing; the identifier after the dot must be a component
name within the record.

11 Expressions

11.1 Simple expressions
expression → number

→ lvalue
→ ’(’ expression ’)’

number → INTEGER | REAL
A number expression evaluates to the literal value specified. Note that reals are distinguished from integers by

lexical criteria (see Section 2). An l-value expression evaluates to the current contents of the specified location.
Parentheses can be used to alter precedence in the usual way.

11.2 Arithmetic operators
expression → unary-op expression

→ expression binary-op expression
unary-op → ’-’
binary-op → ’+’ | ’-’ | ’*’ | ’/’ | div | mod

Operators +,-,* require integer or real arguments. If both arguments are integers, an integer operation is per-
formed and the integer result is returned; otherwise, any integer arguments are coerced to reals, a real operation is
performed, and the real result is returned. Operator / requires integer or real arguments, coerces any integer argu-
ments to reals, performs a real division, and always returns a real result. Operators div (integer quotient) and mod
(integer remainder) take integer arguments and return an integer result. All the binary operators evaluate their left
argument first.

6

11.3 Logical operators
expression → unary-op expression

→ expression binary-op expression
unary-op → not
binary-op → or | and

These operators require boolean operands and return a boolean result. or and and are “short-circuit” operators;
they do not evaluate the right-hand operand if the result is determined by the left-hand one.

11.4 Relational operators
expression → expression binary-op expression
binary-op → ’>’ | ’<’ | ’=’ | ’>=’ | ’<=’ | ’<>’

These operators all return a boolean result. These operators all work on numeric arguments; if both arguments
are integer, an integer comparison is made; otherwise, any integer argument is coerced to real and a real comparison
is made. Operators = and <> also work on pairs of boolean arguments, or pairs of record or array arguments of the
same type; for the latter, they test “pointer” equality (that is, whether two records or arrays are the same instance, not
whether they have the same contents). These operators all evaluate their left argument first.

11.5 Function call
expression → expression ’(’ expressions ’)’
expressions → [expression {’,’ expression}]

This expression is evaluated by evaluating the operator expression to obtain the function closure value, and then the
argument expressions left-to-right to obtain actual parameter values, and finally executing the function with its formal
parameters bound to the actual parameter values. The function returns by executing an explicit return statement
(with an expression for the value to be returned), so the return type must not be unit. The returned value becomes
the value of the function call expression.

11.6 Record construction
expression → ID ’{’ [record-inits] ’}’
record-inits → record-init {’,’ record-init}
record-init → ID ’:=’ expression

If typename is a record type name, then typename {id1:=exp1,id2:=exp2,. . .} evaluates each expression left-
to-right, and then creates a new record instance of type typename with named components initialized to the resulting
values. The names and types of the record component initializers must match those of the named type (including any
components inherited from a super-type), though they need not be in the same order.

11.7 Array construction
expression → ’@’ type-expr ’{’ [array-inits] ’}’
array-inits → array-init { ’,’ array-init}
array-init → [expression of] expression

The expression @texpr {exprn
1 of exprv

1, exprn
2 of exprv

2,. . .} evaluates each pair of expressions in left-
to-right order to yield a list of pairs of integer counts ni and initial values vi, and then creates a new array instance with
elements of type texpr whose contents consist of n1 copies of v1, followed by n2 copies of v2, etc. If any of the counts
is 1, it may be omitted. For example, the specification @integer{1,2 of 3,3 of 2,4} yields an integer array
of length 7 with contents 1,3,3,2,2,2,4. If any of the ni is less than 1, no copies of the corresponding vi are
included. The types of the vi must match texpr.

7

11.8 Precedence and associativity
Function call and parenthesization have the highest (most binding) precedence; followed by unary -; followed by *,
/, mod, and div; followed by + and -; followed by the relational operators; followed by not; followed by and;
followed by or.

The binary arithmetic and logical operators are all left-associative. The relational operators are non-associative; in
other words, an expression such as a = b = c is illegal, although one such as (a = b) = c is legal (presuming
c has type boolean.

12 Statements

12.1 Block
statement → block

A block may be introduced at any point where a statement is expected.

12.2 Assignment
statement → lvalue ’:=’ expression

The l-value is evaluated to a location; then the expression is evaluated and its value is stored in the location.
Assigning a record or array value actually assigns a pointer to the record or array.
Constants and const-declared parameters cannot be assigned into.

12.3 Function Call
statement → expression ’(’ expressions ’)’
expressions → [expression {’,’ expression}]

This statement is executed by evaluating the operator expression to obtain the function closure value, and then the
argument expressions left-to-right to obtain actual parameter values, and finally executing the function with its formal
parameters bound to the actual parameter values. The function must have return type unit. The function returns
when its final statement or an explicit return statement (with no expression) is executed.

12.4 Read
statement → read ’(’ lvalue {’,’ lvalue} ’)’

This statement is executed by evaluating the l-values to locations in left-to-right order, and then reading numeric
literals from standard input, evaluating them, and assigning the resulting values into the locations. The l-values must
have type integer or real, and their types guide the evaluation of the corresponding literals. They must not be constants
or const-declared parameters. Input literals are delimited by whitespace, and the last one must be followed by a
carriage return.

12.5 Write
statement → write ’(’ write-params ’)’
write-params → [write-expr {’,’ write-expr}]
write-expr → STRING | expression

Executing this statement evaluates the specified expressions (which must evaluate to integers, reals, booleans, or
string literals) in left-to-right order, and then writes the resulting values to standard output (with no separation between
values), followed by a newline.

8

12.6 If-then-else
statement → if expression then statement

{elsif expression then statement}
[else statement]

This statement specifies the conditional execution of guarded statements. The expression preceding a statement
sequence, which must evaluate to a boolean, is called its guard. The guards are evaluated in left-to-right order, until
one evaluates to true, after which its associated statement sequence is executed. If no guard is satisfied, the statement
sequence following the else (if any) is executed.

In cases of ambiguity, an else or elsif is always attached to the nearest previous if statement.

12.7 While
statement → while expression do statement

The inner statement is repeatedly executed as long as the expression evaluates to true, or until an exit from the
loop (see Section 12.10).

12.8 Loop
statement → loop statement

The inner statement is repeatedly executed until an exit occurs (see Section 12.10).

12.9 For
statement → for lvalue ’:=’ expression to expression [by expression]

do statement

Executing the statement for lval := exp1 to exp2 by exp3 do st is equivalent to the following steps:
(i) evaluate expressions exp1, exp2, and exp3 in that order to values v1, v2, v3 (which must be integers); (ii) set lval
:= v1; (iii) if the value of lval is less than or equal to v2, execute st; otherwise terminate the loop. (iv) set lval := lval
+ v3 and repeat step (iii).

If the by clause is omitted, v3 is taken to be 1.
The loop index lval is an ordinary integer l-value that is not a constant or const-declared parameter; it must be

declared in the scope containing the ’for’ statement, and it can be inspected or set above, within, or below the loop
body.

The normal execution of the loop can be interrupted early by an exit statement (see Section 12.10).

12.10 Exit
statement → exit

Executing exit causes control to pass immediately to the next statement following the nearest enclosing while,
loop or for statement. If there is no such enclosing statement, the exit is illegal.

12.11 Return
statement → return [expression]

Executing return terminates execution of the current function and returns control to the calling context. There
can be multiple returns within one function body, and there is an implicit return at the bottom of every function.
A return from a function with return type other than unit must have a return value expression of the return type; a
return from a function with return type unit must not. The top-level program block must not include a return.

9

13 Complete Concrete Syntax
program → {recordtype-decl} block
recordtype-decl → record ID [extends ID] ’{’ [components] ’}’ ’;’
components → component {’,’ component}
component → ID ’:’ type-expr
block → ’{’ block-items ’}’
block-items → [block-item {’;’ block-item}]
block-item → declaration | statement
declaration → const-decl | var-decl | funcs-decl
const-decl → const ID [’:’ type-expr] ’:=’ expression
var-decl → var ID [’:’ type-expr] ’:=’ expression
funcs-decl → func func-decl {and func-decl}
func-decl → ID ’(’ [params] ’)’ [’->’ type-expr] block
params → param {’,’ param}
param → [const] ID ’:’ type-expr
type-expr → ID

→ ’@’ type-expr
→ type-args ’->’ type-expr
→ ’(’ type-expr ’)’

type-args → ’(’ ’)’
→ type-expr
→ ’(’ type-expr {’,’ type-expr} ’)’

statement → lvalue ’:=’ expression
→ expression ’(’ expressions ’)’
→ read ’(’ lvalue {’,’ lvalue} ’)’
→ write ’(’ write-params ’)’
→ if expression then statement

{elsif expression then statement}
[else statement]

→ while expression do statement
→ loop statement
→ for lvalue ’:=’ expression to expression [by expression]

do statement
→ exit
→ return [expression]
→ block

write-params → [write-expr {’,’ write-expr}]
write-expr → STRING | expression
expression → number

→ lvalue
→ ’(’ expression ’)’
→ unary-op expression
→ expression binary-op expression
→ expression ’(’ expressions ’)’
→ ID ’{’ [record-inits] ’}’
→ ’@’ type-expr ’{’ [array-inits] ’}’

expressions → [expression {’,’ expression}]
lvalue → ID

→ lvalue ’[’ expression ’]’
→ lvalue ’.’ ID

record-inits → record-init {’,’ record-init}
record-init → ID ’:=’ expression
array-inits → array-init { ’,’ array-init}
array-init → [expression of] expression
number → INTEGER | REAL
unary-op → ’-’ | not
binary-op → ’+’ | ’-’ | ’*’ | ’/’ | div | mod | or | and

→ ’>’ | ’<’ | ’=’ | ’>=’ | ’<=’ | ’<>’

10

