
Suppl : A Flexible Language for Policies

Robert Dockins and Andrew Tolmach

Portland State University

Abstract. We present the Simple Unified Policy Programming Lan-
guage (Suppl), a domain-neutral language for stating, executing, and
analyzing event-condition-action policies. Suppl uses a novel combina-
tion of pure logic programming and disciplined imperative programming
features to make it easy for non-expert users to express common policy
idioms. The language is strongly typed and moded to allow static detec-
tion of common programming errors, and it supports a novel logic-based
static analysis that can detect internally inconsistent policies. Suppl has
been implemented as a compiler to Prolog and used to build several
network security applications in a Java framework.

1 Introduction

Many computing systems incorporate policies that specify how the system should
respond to events. Policies are used to define, e.g., who may access protected web
sites, how to categorize arriving emails, or what to do when the temperature in
boiler #2 exceeds safe limits. Because policies change over time, designers often
provide a mechanism to express them separately from the main body of imple-
mentation code. This mechanism might be simple, like configuration parameters
accessed by a GUI (e.g., your email client); but it may be a non-trivial external
language in its own right (e.g., configuration files for a Cisco router). A dedicated
policy language allows relatively non-technical users to write and review poli-
cies without understanding the underlying code. It may also support automatic
analysis of policies for properties such as consistency or completeness.

Many existing policy languages evolved in the context of particular appli-
cations or execution environments and hence are domain-specific, “baking in”
concepts related to, say, networks or access control. However, policy languages
often share common basic requirements and structures. This raises a natural
challenge: can we define a domain-neutral policy language suitable for use in a
wide variety of applications? Moreover, existing policy languages often appear
very ad-hoc: they typically lack control abstractions, types, and support for
modularity. This raises another challenge: can we improve on these languages by
applying ideas from programming language design?

Suppl, the Simple Unified Policy Programming Language, is our attempt to
address these challenges.1 Suppl is designed to describe the large class of policies
known as event-condition-action (ECA) policies. The ECA paradigm, originally

1 http://web.cecs.pdx.edu/~rdockins/suppl/

developed in the context of active databases [10], is based on an event-handling
loop. When an external stimulus generates an event, the policy evaluates condi-
tions based on the current state of the world and its internal memory and decides
what actions to take. Suppl uses a novel combination of (pure) predicates from
logic programming, used to describe conditions, and imperative event handlers,
which generate actions. Both parts work together to make expressing common
policy idioms simple and understandable. The Suppl language is parameterized
over the vocabulary of events and actions needed for a particular domain. These
are provided by an ambient execution environment (coded in a conventional lan-
guage) which triggers calls into Suppl when an event occurs and interprets the
action directives that Suppl returns.

Suppl is strongly typed, strongly moded, and locally stateless. These features
are designed to make Suppl programs easy to reason about and to facilitate the
early detection of errors. Despite its locally stateless properties, Suppl is capable
of expressing stateful policies by making controlled use of data tables that provide
a principled point of interaction between the stateless logic-programming core
and the imperative event-handling language.

Suppl is also designed to allow easy combination of distinct policy units,
perhaps written by different people. Both predicates and event handlers can
be easily extended by additional, textually separate, clauses. However, these
features make it possible to write policies that are incoherent—for example, an
access control policy might generate both “allow” and “deny” actions in response
to a request event. To report such possible inconsistencies, we have developed a
novel logic-based static analysis called conflict detection, which is only feasible
because we have a carefully-designed language specifically for policies.

Suppl has been implemented as a compiler generating Prolog code, which
runs in a Java execution environment that provides the realizations of events
and actions. On top of this implementation we have built two network security
applications. The first is a prototype active network firewall built on the Linux
netfilter stack, in which connection attempts are mediated by a Suppl policy.
The second is the SOUND platform [9], which uses active sensing to detect
misbehavior on networks and introduction-based-routing [13] to control access.
Suppl can be used to define various aspects of policy in this system, for example,
what remedial actions to take when misbehavior is detected.

The detailed contributions of this paper are as follows:

– A tutorial introduction to Suppl from the viewpoint of a policy author,
using a simple example (§2).

– A novel approach to integrating pure predicates and stateful event handlers
(§3.1).

– The static type and mode system used for predicates, which is both simple
and practical (§3.2).

– Conflict detection analysis, which combines control-flow analysis and auto-
mated provers to find potential inconsistencies in policies (§4).

– An implementation of Suppl, using a Java-based runtime system (§5).

2 Suppl by example

Suppl is our attempt to build a general-purpose policy language as described in
the introduction. It explicitly embraces the ECA paradigm; events and actions
are primitive concepts in the language, and event handlers are the fundamental
construct for initiating computation. Conditions are another bedrock concept:
the main programming abstraction in Suppl is the predicate, similar to that
found in logic programming languages like Prolog. Unlike Prolog, the Suppl
predicate language is pure (no side effects), strongly typed and strongly moded.
Event handlers are written in a separate imperative vocabulary designed to make
expressing policy decisions as natural as possible.

To illustrate Suppl, we will examine an extended example. Suppose we are
writing a policy for a system that controls door locks in a secure facility. A
person requests a door to open by using their keycard; the system decides to
accept the request and open the door, or to deny the request and leave the door
locked. The system is also capable of raising an alarm, which will cause security
personnel to head to the area to investigate.

Primitives We can model these concepts in Suppl in a few lines; see Listing 1,
lines 1–8. We declare person, scanner, location and door to be primi-
tive types. These types will have some concrete implementation in the security
system, but they are treated as opaque by Suppl. We also declare an event
open door request, indicating that someone has used a keycard scanner and
requested a door to be opened, and two actions the system can take in response:
open door and dispatch security. These declarations (together with the
other primitive declarations) form the interface between the policy and the sys-
tem being governed. Note that a policy may decide to do nothing in response to
an event; for this door lock setting, this constitutes a request denial.

On line 10 we declare that the open door and dispatch security ac-
tions are in conflict. This is our way to state our intention that a single policy
event should not elicit both actions. Conflict declarations will come into play
when we discuss conflict analysis later.

To define any interesting policies regarding this security system, we need to
have some operations that allow us to examine the properties of the opaque
types. For example, we need to know which scanners govern which doors, where
the scanners are, and the location to which the scanner gates access. Lines 12–14
of Listing 1 declare three functions from the opaque type scanner to doors
and locations. It will eventually be the responsibility of the security system to
implement these operations. Finally, we need to know who is allowed to be where.
Line 16 introduces a predicate, authorized loc, which represents a relation
between persons and locations. For now, we leave unspecified how authorizations
are determined; thus the predicate is declared primitive. The in keyword is
related to the mode system and indicates that uses of this predicate must pass
both arguments in; modes are discussed in more detail below.

1 primitive type person.
2 primitive type scanner.
3 primitive type location.
4 primitive type door.
5

6 event open door request(person, scanner).
7 action open door(door).
8 action dispatch security(location).
9

10 conflict open door(), dispatch security().
11

12 primitive function scan door(scanner) yields door.
13 primitive function scan loc(scanner) yields location.
14 primitive function scan gates(scanner) yields location.
15

16 primitive predicate authorized loc(person in, location in).
17

18 handle open door request(?P, ?S) =>
19 query
20 | authorized loc(P, scan loc(S)) =>
21 query
22 | authorized loc(P,scan gates(S)) => open door(scan door(S));
23 | => skip;
24 end;
25 | => dispatch security(scan loc(S));
26 end;
27 end.

Listing 1. A simple door security policy

Event Handler Now we can define a simple event handler for the security system
(lines 18–27). This handler says how to respond to an open door request
event. Like every event handler, it starts by naming the event to be handled
and binding the event arguments; the ?P form indicates a variable binding. The
main body of the handler consists of a query statement with two branches. Each
branch consists of a logical query on the left of the => symbol and a list of
statements on the right. The first branch is entered if the person P is authorized
to be where they are now, i.e., in the location where the scanner is; otherwise
the second branch is entered and security is dispatched to that location. In the
first branch, another query is run to see if person P is allowed on the far side of
the door. If so, the door is opened; otherwise, the request is denied. In general, a
query construct may have many branches; the queries are attempted in order and
(only) the first one to succeed is executed. The underscore represents a trivial
query that always succeeds, and skip is a command that has no effect. If no
branch of a query construct succeeds, nothing happens. Thus, the query branch
on line 23 is redundant and could be eliminated without changing the meaning
of the program.

Authorization Suppose we want to define the predicate authorized loc in-
stead of making it a primitive. To do this, we remove the primitive keyword
from its declaration and we specify rules that define when the predicate holds.

The syntax for rules is quite similar to Prolog syntax. In particular, we adopt
the Prolog lexical convention that variables begin with uppercase letters and
program identifiers begin with lowercase letters.

Listing 2, lines 1–9, uses two rules to define the authorized loc predicate
in terms of some new, lower-level, primitives. (Note: for space reasons we have
not repeated lines 1–14 of Listing 1.) A rule consists of a single predicate applied
to some arguments followed by the :− symbol and a comma-separated list of
clauses. A rule should be read as an implication from right to left. Thus, the rule
authorized loc(P,L):− public space(L) means that “for all P and L,
if L is a public space then P is authorized to be in L.” When multiple clauses
are separated by a comma, all must hold. So the second rule means that P is
authorized to be in L if P belongs to some group G that owns L. Finally, the
meaning of the predicate authorized loc is the disjunction of all the right-
hand-sides of its rules. So, authorized loc holds if either of its two rule bodies
hold.

The overall effect of this policy will be to allow persons into and out of areas
that are public or for which they are members of an owning group. If someone
gets into an area for which they are not authorized (by tailgating someone else,
say) then security will be notified if they try to leave by using a keycard scanner.

Detecting repeated failures Now, suppose we want to prevent someone from doing
a trial-and-error scan with their keycard; that is, we don’t want people to be
able to map out which doors are opened by a keycard by simply trying all of
them and seeing which ones open. Such a pattern of use might occur if a keycard
is stolen and the thief doesn’t know what doors it opens. One way to mitigate
this risk is to keep track of failed open attempts. If too many failed attempts
happen within a short time frame, we want to dispatch security to investigate.

To do this, we need to keep some state about failed requests. Suppl is, by
design, locally stateless, so there are no mutable references or data structures
we can manipulate within queries to keep track of this information. Instead,
Suppl includes a concept of data tables, which provide a principled way to
implement stateful policies. From the point of view of the logic programming
query language, tables are just another predicate that may be used in rules.
However, the imperative event handling language has commands that insert and
delete rows from tables.

Suppose we want to trigger an alarm if more than five failed attempts are
made by a single person within an hour. To keep track of the required data,
we set up a table and write an event handler to populate it (see Listing 2 lines
11–21). Table declarations are similar in most ways to predicate declarations;
the columns of the table are given as an ordered tuple of types, just as for
predicates. However, unlike predicates, tables behave much like the tables of a
relational database: tuples are added and removed from tables explicitly rather
than by defining rules. The key clause declares the table’s primary key. The
mode keywords following key indicate which columns form the table’s primary
key: columns declared with the mode in are in the primary key and those
declared with mode out are not. Every table will contain at most one row for

1 predicate authorized loc(person in, location in).
2

3 authorized loc(P,L) :− public space(L).
4 authorized loc(P,L) :− group owns(G,L), group member(P,G).
5

6 primitive type group.
7 primitive predicate public space(location in).
8 primitive predicate group owns(group in, location in).
9 primitive predicate group member(person in, group out).

10

11 table failed attempts(person, scanner, eventid)
12 key (in,in,in) lifetime 3600000.
13 index failed attempts(in, out, out).
14

15 handle open door request(?P, ?S) =>
16 query
17 | authorized loc(P, scan gates(S)) => skip;
18 | => queue insert (P, S, current event)
19 into failed attempts;
20 end;
21 end.
22

23 predicate excessive failures(person in).
24 excessive failures(P) :−
25 findall(EID,failed attempts(P, ,?EID),RS), set size(RS) >= 5.
26

27 handle open door request(?P, ?S) =>
28 query
29 | authorized loc(P, scan loc(S)) =>
30 query
31 | authorized loc(P, scan gates(S)) =>
32 open door(scan door(S));
33 | excessive failures(P) =>
34 dispatch security(scan loc(S));
35 end;
36 | => dispatch security(scan loc(S));
37 end;
38 end.

Listing 2. A more complicated door security policy

the values in the primary key. If a new row is inserted with the same values for all
primary key columns as a row already in the table, the old row will be evicted and
the new row will replace it. Tables also have an optional lifetime argument
that indicates how many milliseconds each row should remain in the table from
the time it was inserted (3600000 milliseconds corresponds to one hour). The
eventid type is a built-in type that is used to give a unique identifier to each
event occurrence.

The index declaration indicates that we intend to query this table by sup-
plying the first column as an argument; the index declaration both interacts with
the mode system (described below) and also suggests to the implementation that

building an index for this table on its first column would be worthwhile. Unlike
the primary key, a table index does not impose any uniqueness constraints.

Despite the strong similarities between Suppl tables and the relational tables
of a typical RDBMS, their use cases are rather different. Suppl tables are pri-
marily intended to store short-term, “soft” data; the Suppl runtime holds table
data in memory and makes no persistence guarantees about it. Restarting the
Suppl runtime will clear all table data. It should be possible to have Suppl data
tables backed instead by a persistent RDBMS; however, a reasonable semantics
for interacting with external RDBMSs seems to require distributed transaction
support in the general case. We hope to examine these issues in future work.

Now we write an event handler that inserts a row into failed attempts
whenever an unauthorized person attempts to enter a gated area (Lines 15–
21). It is normal in Suppl to have more than one handler for a given event;
when that event occurs, all its handlers will be run. The query illustrates the
use of sequential evaluation to implement a form of negation. If the person
is authorized, the first query branch succeeds and the handler does nothing;
otherwise, the second branch is executed and the insertion is performed. The
primitive current event function returns the eventid corresponding to the
event currently being handled. The result of this pattern is that we get a sliding
window view of all the failed open attempts that have occurred in the last hour.

Note that the command to insert a row is written queue insert: this
indicates that the insert does not happen immediately. Instead, it occurs after all
handlers for the current event have completed. This is to ensure that there are
no complicated and difficult-to-debug interactions between separately-defined
event handlers. State changes are queued up and executed after all handers are
finished, so that the next event that occurs will see the updated table state.

Now we can write the excessive failures predicate that holds if a per-
son has amassed too many failed attempts (lines 23–25). This predicate holds on
a person P who has five or more distinct failed door-open event identifiers in the
failed attempts table. The excessive failures predicate relies on the
primitive findall construct, which calculates a set of all the solutions to a given
query. Here we use it to get a result set whose size we can then calculate using
the built-in set size function. As used here, the findall can be rendered as
“find all instances of EID such that P is related to EID (for some ignored scanner
value) in the failed events table; place the result set in variable RS.” In contrast
to every other predicate construct, findall has explicit variable binding. Vari-
ables bound in the second argument (the search goal) may appear in the first
argument. Using this predicate, we can now replace our original event handler
(Listing 1 lines 17–27) with one that also responds to excessive failures
(Listing 2 lines 27–38).

3 Suppl in Detail

Suppl’s design attempts to balance competing objectives: simplicity, expressiv-
ity, support for early detection of errors, and ease of combining separately-written

policies. The use of logic programming, for example, is driven both by the need
for expressivity (realistic policy conditions are naturally expressed using logic
programming rules) and to make it easy to combine policies. As compared to
procedures or functions, it is easy to extend the functionality of predicates by
adding new rules. In the interests of both simplicity and expressivity, we allow
arbitrary recursive predicates to be written, which makes the language Turing-
complete. Event handling is likewise easy to extend by adding new handlers—
event handling logic does not have to be collected together in a single place.

A slightly simplified syntax for Suppl is presented in Figure 1. For lack of
space, we do not give full explanations of all the language’s constructs, but in-
stead focus on the most important and novel. There are four major syntactic
classes: terms, clauses, handler bodies and declarations. Terms represent data
values, clauses are used to define predicates, and handler bodies are used to
implement handlers and procedures. A Suppl program consists of a set of dec-
larations, which are used both to provide static information to the compiler
(declaring types and modes for predicates, functions, etc.) and to implement the
policy (rules, event handlers, procedure definitions). Terms are quite similar to
those of Prolog, with the addition of the variable binding form ?A (used inside
handler bodies to make variable bindings explicit), and of tuple data structures.
Clauses also take inspiration from Prolog; the main syntactic difference is that
disjunction is written with a vertical bar rather than with the traditional semi-
colon. The operational semantics of the logic programming core of Suppl can be
understood in a standard way, as performing selective linear definite clause (SLD)
resolution [18] with negation-as-failure [7]. The parts of Suppl that cannot be
understood by analogy to standard logic programming concepts are covered in
further detail below.

3.1 Event handlers

The primary interface between a Suppl policy and the system it governs is
defined by events and actions. These are declared as distinguished identifiers
carrying some number of data arguments. Their meaning is determined entirely
by the surrounding execution environment.

Program execution is always initiated by an event and events happen when
the system being governed wishes to interrogate the policy. When an event oc-
curs, every event handler in the program matching the event is executed and the
set (possibly empty) of all resulting actions is collected together to be passed to
the surrounding execution environment. The execution environment is responsi-
ble for executing these actions, as well as for implementing all declared primitive
functions and predicates. The Suppl semantics assumes that the execution of
primitive functions and predicates is side-effect free. Suppl is “locally state-
less,” which means the only state in Suppl is in the data tables, and they do
not change during the execution of the handlers for a single event. Instead, the
effects of any queue insert or queue delete statements are delayed until
after all handlers for the event have completed.

d ::= Declaration
| primitive type 〈id〉. prim type decl
| type 〈id〉 := t. type decl
| data 〈id〉 ::= 〈id〉(t1, · · · , tm) | · · · | 〈id〉(t1, · · · , tn). data type decl
| event 〈id〉(t1, · · · , tn). event decl
| action 〈id〉(t1, · · · , tn). action decl
| conflict 〈id1〉(t1, · · · , tn),〈id2〉(t1, · · · , tm) (=> c)? . conflict decl
| procedure 〈id〉(t1, · · · , tn). procedure decl
| primitive function〈id〉 (t1, · · · , tn) yields t . prim function decl
| (primitive)? predicate 〈id〉(t1 o1?, · · · , tn on?). predicate decl
| mode 〈id〉(o1, · · · , on). mode decl
| table 〈id〉(t1, · · · , tn) key (o1, · · · , on) (lifetime 〈int〉)?. table decl
| index 〈id〉(o1, · · · , on). index decl
| g :- c . rule
| handle 〈id〉(?X1, · · · , ?Xn) => b end. event handler
| define procedure 〈id〉(?X1, · · · , ?Xn) := b end. procedure defn
| axiom c . axiom decl
| lemma c . lemma decl

b ::= Handler Body
| b1 b2 sequence
| 〈id〉(m1, · · · ,mn); procedure or action
| queue insert(m1, · · · ,mn) into 〈id〉; table insert
| queue delete(m1, · · · ,mn) from 〈id〉; table delete
| skip; noop
| query | c1 => b1 · · · | cn => bn end; multibranch query
| foreach c => b end; foreach query

t ::= Type
| 〈id〉 named type
| X,Y, Z, · · · type variables
| list(t) list
| set(t) finite set
| map(t1, t2) finite map
| t1 ∗ · · · ∗ tn tuple type
| number numeric type
| string string type

c ::= Clause
| m1 = m2 | m1 <> m2 (dis)equality
| m1 <= m2 | m1 < m2 comparisions
| m1 >= m2 | m1 > m2

| 〈id〉(m1, · · · ,mn) predicate
| c1|c2 disjunction
| c1, c2 conjunction
| not c negation
| c1 -> c2 implication
| findall(m, g,X) find all

o ::= Mode
| in | out | ignore

g ::= 〈id〉(m1, · · · ,mn) Goal

m ::= Term
| "literal", · · · strings
| 10, 3.14, 2.9e8, · · · numbers
| X, Y, Z, · · · variables
| ?X, ?Y, ?Z, · · · var bindings
| anonymous var
| 〈id〉(m1, · · · ,mn) function call
| m1 + m2 | m1 −m2 numeric ops
| m1 ∗m2 | m1/m2

| ~m negative
| [] empty list
| [m1, · · · ,mn] concrete list
| [m1 | m2] list cons cell
| (m1, · · · , mn) tuple

Fig. 1. Simplified syntax of Suppl

All program execution is event-driven, and the event handler serves as the
entry point for Suppl programs. The body of an event handler is a sequence
of statements, which may be actions, commands to manipulate data tables,
query evaluations, or foreach invocations. Event handlers can also invoke
user-defined procedures that abstract over common sequences of statements.

The query construct, illustrated by several examples in §2, consists of a
series of branches, each guarded by a query into the core logic-programming
part of the language; the branch corresponding to (just) the first successful
query is executed. This behavior captures a common idiom that is inconvenient
to express in pure logic programming (without cut).

The foreach construct foreach some pred(A,?B)=> ... end; is an
iterator: it asks the system to find all values for B such that some pred(A,B)
is true, and executes its body once for each instantiation found.

3.2 Predicates, Types, and Modes

Unlike Prolog, Suppl predicates are pure (they lack both side-effects and non-
logical constructs, like cut), well-typed and well-moded. Types and modes are
primarily intended to help with early detection of errors. They make large classes
of “shallow” errors (e.g., mixing up argument order) detectable at compile time.
A strong typing discipline also makes it easier to interface with SMT solvers for
discovering deeper program properties (see §4). Our type and mode systems are
similar to those of Mercury [22] and HAL [14], but significantly simpler.

Types built in to the system include number and string. There are also
built-in polymorphic type operators list, (finite) set and (finite) map. Users
may also declare recursive algebraic datatypes for generating arbitrary tree-
shaped data structures. Every predicate in a Suppl program must be declared,
giving the number and types of its arguments.

Modes indicate which arguments of a predicate are inputs and which are con-
sidered outputs. For example, the predicate call member([1,2,3,4], 2) asks
the question: “does the list [1,2,3,4] contain the value 2?” Both arguments
are used in input mode. On the other hand, the call member([1,2,3,4],N)
asks the system to find all values for N (four in this case) that make the state-
ment true. Here we are using the second argument in output mode. Not all modes
make sense for a given predicate. The call member(L, 5) asks the system to
find all lists L that contain value 5; there is no obvious algorithm for doing this,
so member can not be used with its first argument in output mode.

As with types, the modes of all predicates in a Suppl program must be de-
clared. For example, we can express the allowed modes for the member predicate
by writing:

mode member(in, in).
mode member(in, out).

The rules of predicates are checked to ensure they respect the specified modes by
reordering the body of each rule (if necessary) so that every variable is instan-
tiated before it is used. Variables get instantiated by being passed in as formal

arguments to a predicate rule, by being generated as outputs from predicate
calls, or via the equality operator. Mode checking ensures that every predicate
can be implemented as a nondeterministic program manipulating only ground
data (i.e., containing no unbound variables) and ensures that “instantiation er-
rors” (which can happen in an ill-moded Prolog program) never occur.

4 Conflict detection

Problem The extensibility of predicates and event handlers makes it easy to
combine Suppl code from multiple sources, but also makes it easy to write
policies that are self-contradictory. The runtime environment must choose some
action (even if that is to do nothing) in response to an incoherent policy outcome;
but without further guidelines, any such choice is necessarily arbitrary.

Consider again the door-lock policy from section 2. The main event handler
(see Listing 2 lines 27–38) opens the door if the requester is authorized both to
be where he is and where he is going. Security is instead dispatched if the user
is not authorized to be where he is. Now suppose we separately want to define a
special class of persons that always have access to any door. One way to do this
is to add the following predicate and handler. We assume the environment has
some way to determine who currently has global privileges.

primitive predicate has global privileges(person in).

handle open door request(?P, ?S) =>
query
| has global privileges(P) => open door(scan gates(S));
end;

end.

Each of these handlers make sense on their own, but in combination they
can result in the policy both opening a door (because the requester has global
access) and also dispatching security (because the requester is not authorized
according to authorized loc). Such a result is undesirable.

Solutions One solution might be to layer an additional mechanism for dynamic
conflict resolution on top of the basic policy language. For example, we might
provide a way to assign priorities to actions, and say that higher-priority actions
“win” in the event of a conflict. But the details of such an approach become
complicated: it is hard to find a modular way to assign priorities (especially
because ties must not be allowed), and it is not clear what to do about the actions
that “lose.” Dynamic conflict resolution can lead to fragile, inscrutable policies
where minor-seeming changes have wide-ranging, poorly understood effects.

We would prefer instead to provide a tool that detects potential conflicts
statically, so that the policy programmer can then use the existing facilities of
the policy language to fix them before execution. Specifically, we focus on a static
analysis that identifies control-flow paths through a policy that are initiated by
the same event and lead to conflicting actions. The policy author declares what

actions she considers conflicting by writing a conflict declaration, e.g., listing 1
line 10.

Let us examine the example conflict from above in more detail. For the
conflict to occur there must be some event that triggers both handlers; thus,
assume open door request(P,S) has occurred. The first handler must have
control flow pass to one of the two branches that dispatches security. For now,
let us consider only one of these, the one appearing in the outermost query
construct. For this branch to activate, the previous branch must have failed, so
authorized location(P,scanner loc(S)) is false. However, the propo-
sition has global privileges(P) must hold for the other handler to issue
the conflicting open door verdict. To rule out this conflict, we must prove a
contradiction under these assumptions. However, we cannot do this; nothing in
the definition of authorized location allows us to derive a contradiction.
So our analysis should report a possible conflict between the two handlers.

We have developed a prototype conflict detection analysis for Suppl that for-
malizes the line of reasoning outlined above. The analysis works in two phases. In
the first phase, it identifies all the pairs of control-flow paths in the program that
could possibly conflict. For each of these, it builds a formula in first-order logic
that states what conditions would have to be true for the program to traverse
both paths on a single event occurrence. In the second phase, these formulae
are passed to an off-the-shelf SMT solver; we have experimented with Z3 [21],
CVC4 [1] and Alt-Ergo [2]. If the solver can show the formula is unsatisfiable, we
know the potential conflict cannot occur. Otherwise (if the solver finds a model
or runs out of time), we report a potential conflict to the user.

We have designed the analysis to be sound, in the sense that it reports all
potential conflicts. But to be useful in practice, it is crucial that the analysis
also be as precise as possible, so that false positives are rare. Because Suppl is
Turing-complete, the analysis cannot be complete, in the sense that it only re-
ports genuine conflicts: some false positives are inevitable. Moreover, the partic-
ular SMT solvers we use may have limitations that induce further imprecisions.
However, although we are still in the early stages of working with our prototype,
our initial results on precision are promising.

Generation of Conflict Formulae The problem definitions that get fed to the
external solver break down into two distinct parts. One part is the definition
of predicates in the program, which we call the background theory. This theory
is the same for all problem instances. The second part consists of a formula
corresponding to a particular pair of potentially-conflicting control-flow paths.

Building the background theory follows well-known work in the semantics of
logic programs with negation-as-failure. For each defined predicate, the analy-
sis calculates the Clark completion [7], which is a standard way to render the
semantics of a logic program into a formula of first-order logic. It essentially
formalizes the idea that a predicate is defined by the disjunction of its rules,
while taking care to bind variables in the places that give the desired meaning.
In other words, the Clark completion defines a predicate to hold if and only if it
is established by one of its rules. Primitive predicates are uninterpreted in the

translation; that is, they are declared but not given any definition. The Clark
completion procedure is sound (but not complete) with respect to Selective Lin-
ear Definite clause (SLD) resolution, the logical reasoning system underlying the
operational semantics of Prolog and similar logic programming languages [18].
This means that every query answered by SLD resolution will be a model of the
Clark completion. However, in some cases SLD resolution will fail to terminate
even when the Clark completion has a model.

The soundness of Clark completion is sufficient for the soundness of our con-
flict analysis. Our analysis attempts to show that the Clark completion has
no models corresponding to the control-flow paths in question; a fortiori a
logic-programming language based on SLD resolution will fail to activate those
control-flow paths. Consider, for example, the authorized loc predicate, de-
fined by the rules below.

authorized loc(P,L) :− public space(L).
authorized loc(P,L) :− group owns(G,L), group member(P,G).

The Clark completion defines this predicate by the first-order formula below:

∀P L. authorized loc(P,L)↔(
public space(L) ∨ (∃G. group owns(G,L) ∧ group member(P,G))

)
Note that variables corresponding to the predicate arguments are quantified
universally at the outside, whereas variables appearing only in the body are
quantified existentially at the level of the rule. If a rule body contains a compound
term instead of a variable, a new fresh variable is introduced and an equality is
added to the rule body.

Next we examine the control-flow paths through the imperative event han-
dlers so we can generate queries to send to an SMT solver. This is done via a
recursive algorithm which, when given the syntax of a handler body, calculates
a set of potential conflicts. A potential conflict consists of the following data: the
name of the initiating event, the user-defined conflict clause that is involved, and
control flow paths that lead from the initiating event to the conflicting actions.
From a given control-flow path, we can determine what logical queries must have
succeeded and failed for the control-flow path to be traversed. For example, if
a control-flow path goes into a branch of a query construct, the logical pred-
icates guarding that branch must hold; and furthermore, the logical predicates
guarding any preceding branches in the query must fail.

For each potential conflict, we can construct a formula in first-order logic
that represents the state of affairs that must exist for the potential conflict to
actually occur. For the example above, the generated conflict formula is:

∃P S.
¬authorized loc(P, scan loc(S)) ∧ has global privileges(P)

A potential conflict is satisfiable if the associated conflict formula is satisfi-
able, given the background theory of the associated logical predicates. Dually,
a potential conflict is unsatisfiable if we can derive a contradiction by assuming

the conflict formula; in other words, if it is logically impossible for the potential
conflict to actually occur.

We have proved the soundness of our conflict analysis with respect to an
idealized version of the semantics of Suppl. In particular, we have proved that,
for every actual conflict that occurs during the run of a Suppl program, our
analysis algorithm generates a satisfiable potential conflict. A straightforward
corollary is: if all the potential conflicts generated by the conflict analysis are
unsatisfiable, then the policy will produce no actual conflicts when executed.
We lack here the space to discuss the conflict generation algorithm or its proof;
details will appear in a forthcoming paper [23].

Asserting facts Sometimes the conflict detection system will report a conflict
where none exists because it has no way to analyze the policy primitives. Policy
authors can communicate domain knowledge about the primitives to the analysis
by using the axiom keyword. Any clause asserted as an axiom is assumed to be
true and will be used by external provers during analysis. Of course, the user
must be very careful only to assert axioms that actually hold; otherwise the
correctness of the analysis will be compromised.

A policy author can also state a lemma; like axioms, lemmas are used by
provers when trying to discharge proof obligations. However, the prover will
also try to prove the lemma. In this way, the policy author can help guide
provers toward finding useful facts they might not otherwise find in time, and
also document the policy with properties that are expected to hold.

External Solver To interface with back-end provers, we use the Why3 pro-
gram verification system [4]. Why3 understands all the concepts we need to
express Suppl programs: first-order logic, recursive datatypes, parametric poly-
morphism, numbers, sets, etc. Why3 can translate all these concepts into forms
that can be understood by back-end SMT solvers; in particular, Why3 knows
how to perform the tricky transformations that are needed to remove parametric
polymorphism, which is not supported natively by most SMT solvers (Alt-Ergo
seems to be the sole exception [3]).

Once our conflict detection problems are exported in Why3 format, we can
use the Why3 system to dispatch the problems to a variety of solvers, including:
CVC4, Alt-Ergo, Z3, and many others. Problems may even be translated into a
form suitable to manual proof in Coq or Isabelle/HOL, if desired.

Discussion We cannot hope to have a complete procedure for finding conflicts,
and false positives are inevitable. However, even if the problem were decidable,
using SMT solvers means that, as a practical matter, we cannot expect to al-
ways get back answers in a reasonable amount of time. Nonetheless, our limited
experience so far has given us promising results; CVC4 and Alt-Ergo both seem
to do well at discharging the problem instances we build. We tested a number of
different ways to resolve the conflict in our door lock policy from above (and for
other similar policies); for each alternative we tried, a solver was able to prove
the conflict could not occur using less than 1 second of runtime.

We do not yet have any data about how this analysis system scales to large
policies. The number of potential conflicts is quadratic in the number of control-
flow paths in a program, but this may be acceptable for realistic policies.

Conflict detection for policies is important in its own right. However, the
potential applications for our analysis pipeline go further. For example, lemmas
can be used simply to document properties of a policy that a user expects to be
true; over time, as a policy is modified, if the lemma is falsified by some change,
the analysis will indicate if the lemma can no longer be proved, indicating a
problem. In future work we hope to explore other avenues for analysis, including
liveness properties and data invariants.

5 Implementation

The implementation of Suppl is divided into two parts: a compiler that trans-
lates Suppl code into an executable Prolog policy; and a backend runtime sys-
tem. The compiler is a standalone application written in Haskell, whereas the
runtime is built on top of the tuProlog interpreter [11], which is written in Java.
Suppl is an open-source project; additional information may be found at the
first author’s home page.2

The most complicated tasks performed by the frontend compiler involve im-
plementing the static type and mode disciplines. The type system is essentially
a first-order variant of Hindley-Milner polymorphism. The type checking algo-
rithm follows the main ideas of the classic type inference algorithm W [20].

The mode system is responsible for ensuring that each predicate defined in a
policy respects its stated modes. Actually, the term “mode checking” is a slight
misnomer, because each mode for a predicate causes different code to be gen-
erated. Mode checking works by literally rearranging the clauses of rules until
data flows strictly from left to right. The mode checking algorithm is extremely
naive—we simply explore all rearrangements of the rule body until we find one
that satisfies the dataflow constraints. Although this takes worst-case time fac-
torial in the number of clauses, it seems to perform well enough in practice.

As Suppl is designed to be agnostic to the problem domain to which it
is being applied, it is important that it be easy to extend the language with
problem-specific programming facilities and to interface with an external sys-
tem that generates the events and implements the actions returned by a Suppl
program. In order to make this interface as easy as possible and to support the
basic logic-programming facilities need for Suppl semantics, our runtime system
for Suppl is based on the tuProlog system [11], a Prolog interpreter written in
Java, which has a well-designed external function interface. To implement Suppl
primitive functions and predicates simply requires writing a Java class contain-
ing methods with the correct names using the tuProlog’s API, and arranging
for the custom class to be loaded into the interpreter. The interpreter uses Java
reflection to find the external functions and execute them as required.

2 http://web.cecs.pdx.edu/~rdockins/suppl/

The executable part of Suppl is deliberately quite similar to Prolog, and the
mapping between Suppl data structures and Prolog data structures is nearly
trivial. The connection between the Java API and Prolog data structures is a
little more distant, but the tuProlog API for manipulating Prolog terms is rela-
tively easy to use. To get a flavor for the required interface programming, consider
the following example file, which implements a simple primitive predicate named
primOp at two different modes.

public class NewLibrary
extends alice.tuprolog.Library {
// in this case, the io mode implementation
// also works for mode ii
public boolean primOp ii 2(Term arg1, Term arg2) {
return primOp io 2(arg1,arg2);

}

public boolean primOp io 2(Term arg1, Term arg2) {
arg1 = arg1.getTerm();

// build some new term
Struct x = new Struct("mkAsdf", arg1);

// try to unify x with arg2
return engine.unify(x, arg2);

}
}

This Java code is sufficient to implement the following declared Suppl prim-
itive.

data asdf ::= mkAsdf(string).

primitive predicate primOp(string, asdf).
mode primOp(in,in).
mode primOp(in,out).

Suppl data constructs, as well as action and event instances, are all repre-
sented directly as functor applications in Prolog; lists and numbers are handled
natively by the Prolog system. Strings are interpreted in Prolog as atoms.

In the tuProlog API, the Struct class (a subclass of Term) represents atoms,
lists and functor applications. Above, new Struct("mkAsdf",arg1) con-
structs a new Prolog functor instance with name mkAsdf and a single argu-
ment, represented by arg1. This maps directly onto a Suppl term built using
the mkAsdf data constructor. The class Number (also a Term subclass) is used
to represent numeric values. Primitive Suppl types can be represented by arbi-
trary Java objects. These objects will be passed around by reference inside the
policy code; the runtime will make use only of basic Java Object methods, like
equals and hashCode.

Using a Prolog interpreter in this way is a relatively heavyweight implemen-
tation strategy and will be unsuitable for applications requiring very frequent
policy queries or which have tight real-time deadlines. So, it would almost cer-

tainly not be acceptable for, say, a firewall to query a Suppl policy every time
a packet arrives; however, it may be acceptable to query the policy every time
a new connection is opened.

Here is some sample code showing how to set up the Suppl runtime envi-
ronment and load a custom library and interact with a loaded policy.

public static void main(String[] args)
throws Exception {

SupplEngine engine = RunPolicy.setupEngine();
NewLibrary lib = new NewLibrary(engine);
engine.loadLibrary(lib);
RunPolicy.loadTheories(args, engine);

Term[] evargs = new Term[] {
new Struct("string literal"),
new Int(6) };

Struct event = new Struct("notification", evargs);

List<Term> actions =
RunPolicy.handleEvent(engine, event);

for(Term t : actions) {
t = t.getTerm();
System.out.println(t.toString());

}
}

This sample code will load any compiled policy files given as command line
arguments, feed a single synthetic event into the policy engine and print the
resulting actions.

The result of this design is that it should be easy to integrate Suppl-defined
policies into existing Java applications whenever policy questions can be orga-
nized into the event-condition-action paradigm. In addition, only modest changes
to the Suppl compiler should be required to target other Prolog systems, which
would allow Suppl policies to integrate with applications written in languages
other than Java.

6 Related work

Here we survey existing work including both explicitly domain-neutral languages
and languages that were designed for network security applications but can easily
be generalized to broader domains.

Generic policy languages The Policy Description Language (PDL) [19] is similar
in many ways to Suppl; it is based on the ECA policy paradigm, is influenced by
logic programming ideas and is also designed with ease of analysis in mind. PDL
has only one form of rule, which states that an event causes a particular action
provided some condition holds. A significant difference from Suppl is that PDL

lacks any explicit notion of state; instead, time-varying policies can be written
using rules that match on event sets that can examine events that occurred in
the past. Suppl event handlers can only examine the current event, but data
tables allow a principled way to record information for later examination.

Ponder [8] is a language for expressing security policies interacting at various
levels of the hardware/software stack: network firewalls, databases, Java runtime
security. Ponder’s approach to specifying policy is quite different to ours; it has a
strongly-developed object model for roles, groups, membership, etc. and syntax
for manipulating these objects. In contrast, Suppl builds in nothing except
primitive base types, and instead relies on the user (or a library author) to build
a model of the problem domain in question.

Modern business rules management systems such as JRules [5] and Drools [17]
include languages for defining arbitrary production rule systems that can be in-
tegrated into Java applications. While production rules have a declarative flavor,
rule actions can actually contain arbitrary imperative code, and chaining among
rules can cause complicated and opaque control flow logic. Suppl enforces a
more disciplined separation between conditions and actions.

Network security The Authorization Specification Language (ASL) [16] is a lan-
guage for expressing certain kinds of access control policies. Like Suppl, it takes
inspiration from logic programming constructs, and the primary act of program-
ming in ASL involves writing various kinds of rules: authorization rules, access
control rules, data integrity rules, etc. ASL allows users to express various kinds
of conflict resolution metapolicies. ASL seems to lack any method for expressing
stateful policies.

The Flow-based Management Language (FML) [15] is a declarative language
for managing enterprise network configuration. An FML policy is expressed as a
set of implication rules, based on nonrecursive DATALOG with negation. There
is no internal notion of state. The language design is tailored to support efficient
(linear time) evaluation. Conflicts can be resolved either by ordering rules or by
assigning priorities to primitive actions.

Procera [24] is a domain specific language (embedded in Haskell) for express-
ing networking policy using the framework of functional reactive programming.
In this framework, one defines a policy program (conceptually) as a time-varying
function from an infinite stream of input events to a stream of output events.
Aside from the quite different programming model, Procera’s status as an embed-
ded DSL makes it more difficult to build static analysis tools, as any analyses
must be able to handle essentially all of the constructs of the host language,
Haskell, a large general-purpose language in its own right.

Conflict detection and resolution Conflict resolution has been studied in the
context of PDL [6]. The PDL conflict resolution system allows users to declare
the conditions under which a conflict occurs. At runtime, conflicts can be handled
in a number of different ways by writing conflict monitors. These may resolve
conflicts by choosing actions with higher priorities, by canceling all effects of
the event causing the conflict, etc. Policy monitors are not expressible in PDL

itself, but must be defined externally. Suppl avoids the tricky issue of conflict
resolution by passing it off instead to the external system we already assume
must exist. Instead, we have concentrated our efforts on building a system to
help users discover potential conflicts in their policies statically.

Dunlop et al. [12] present a system for both detecting and dynamically re-
solving policy conflicts. In their system, policies are stated using operators of
deontic logic—in particular, modal operators for permission, prohibition and
obligations. They propose a number of strategies for resolving conflicts at run-
time (explicit priority values, new policy overrides old, specific policy overrides
general, etc.) and suggest that no one strategy is appropriate for all uses.

7 Conclusion

Suppl is a programming language designed from the ground up for expressing
and reasoning about event-condition-action policies over arbitrary domains. It
combines the power and simplicity of pure logic programming, used for describing
conditions, with the flexibility and familiarity of imperative programming, used
to connect events to actions. The language has been implemented and integrated
into several Java-based network security applications. We are actively working
to apply it in additional domains.

Perhaps the most important benefit of having a dedicated language for au-
thoring policies is the opportunity to apply sophisticated static analyses to detect
errors before a policy is fielded. We have developed a prototype of one such analy-
sis, which discovers conflicts caused by inconsistent actions, making essential use
of an external logic solver. As future work, we plan to extend this prototype—in
particular, by improving the quality of feedback from the external solver to the
programmer—and to apply the same approach to other static analyses, such as
liveness or functional correctness.

Acknowledgments

This work was supported by the Air Force Research Laboratory under contract
FA8650-11-C-7189. Any opinions, findings, and conclusions or recommendations
expressed herein are those of the authors and do not necessarily reflect the views
of the funding agency.

References

1. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Intl. Conf. on Computer Aided Verification
(CAV). LNCS, vol. 6806, pp. 171–177. Springer (Jul 2011)

2. Bobot, F., Conchon, S., Contejean, E., Iguernelala, M., Lescuyer, S., Mebsout, A.:
(2008), http://alt-ergo.lri.fr/, the Alt-Ergo automated theorem prover

3. Bobot, F., Conchon, S., Contejean, E., Lescuyer, S.: Implementing Polymorphism
in SMT solvers. In: Intl. Workshop on Satisfiability Modulo Theories (SMT). ACM
International Conference Proceedings Series, vol. 367, pp. 1–5 (2008)

4. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd
of provers. In: Boogie 2011: Workshop on Intermediate Verification Languages. pp.
53–64. Wroc law, Poland (August 2011)

5. Boyer, J., Mili, H.: Agile Business Rule Development. Springer (2011)
6. Chomicki, J., Lobo, J., Naqvi, S.: Conflict resolution using logic programming.

IEEE Trans. on Knowl. and Data Eng. 15(1), 244–249 (Jan 2003)
7. Clark, K.L.: Negation as failure. Logic and Data Bases pp. 293–322 (1977)
8. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder policy specification

language. In: Policies for Distributed Systems and Networks. LNCS, vol. 1995, pp.
18–38. Springer (2001)

9. DARPA: Safety On Untrusted Network Devices (SOUND) (2011), Mission-oriented
Resilient Clouds (MRC) program: DARPA-BAA-11-55

10. Dayal, U., Hanson, E.N., Wisdom, J.: Active database systems. In: Modern
Database Systems. ACM (1994)

11. Denti, E., Omicini, A., Ricci, A.: Multi-paradigm Java-Prolog integration in tuPro-
log. Sci. Comput. Program. 57(2), 217–250 (Aug 2005)

12. Dunlop, N., Indulska, J., Raymond, K.: Methods for conflict resolution in policy-
based management systems. In: Intl. Conf. on Enterprise Distributed Object Com-
puting. IEEE (2003)

13. Frazier, G., Duong, Q., Wellman, M.P., Petersen, E.: Incentivizing responsible net-
working via introduction-based routing. In: Intl. Conf. on Trust and Trustworthy
Computing. pp. 277–293. TRUST’11, Springer-Verlag, Berlin, Heidelberg (2011)

14. Garcia de la Banda, M., Stuckey, P.J., Harvey, W., Marriott, K.: Mode checking
in HAL. Conference on Computational Logic (2000)

15. Hinrichs, T.L., Gude, N.S., Casado, M., Mitchell, J.C., Shenker, S.: Practical
declarative network management. In: Workshop on Research on Enterprise Net-
working. pp. 1–10. WREN ’09, ACM (2009)

16. Jajodia, S., Samarati, P., Subrahmanian, V.S.: A logical language for expressing
authorizations. In: IEEE Symp. on Security and Privacy. IEEE (1997)

17. JBoss Drools Team: Drools documentation (2014), http://docs.jboss.org/

drools/release/6.1.0.Final/drools-docs/html_single

18. Kowalski, R., Kuehner, D.: Linear resolution with selection function. Artificial
Intelligence 2, 227–260 (1971)

19. Lobo, J., Bhatia, R., Naqvi, S.: A policy description language. In: AAAI Conf. on
Artificial Intelligence. American Association for Artificial Intelligence (1999)

20. Milner, R.: A theory of type polymorphism in programming. J. Comput. Syst. Sci.
17, 348–75 (1978)

21. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Tools and Algorithms
for the Construction and Analysis of Systems (TACAS). LNCS, vol. 4963, pp.
337–340. Springer (2008)

22. Somogyi, Z., Henderson, F., Conway, T.: The execution algorithm of Mercury: an
efficient purely declarative logic programming language. Journal of Logic Program-
ming 29(1-3), 17–64 (1996)

23. Trieu, A., Dockins, R., Tolmach, A.: Conflict analysis for Suppl (2014), in preper-
ation

24. Voellmy, A., Kim, H., Feamster, N.: Procera: A language for high-level reactive
network control. HotSDN (2012)

