
Technical Report 06-04 Computer Science Department Portland State University

The 2006 Federated Logic Conference

The Seattle Sheraton Hotel and Towers

Seattle, Washington

August 10 - 22, 2006

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

RTA’06 Workshop

WRS’06

The Sixth International Workshop on
Reduction Strategies in Rewriting and Programming

August 11th, 2006

Proceedings

Editor:

Sergio Antoy

Technical Report 06-04 Computer Science Department Portland State University



Preface

This volume contains the pre-workshop proceedings of the Sixth International
Workshop on Reduction Strategies in Rewriting and Programming
(WRS’06) which was held on August 11th, 2006, in Seattle, Washington, USA,
as part of the Federated Logic Conference, FLoC 2006. The workshop is the
sixth edition in a series of events intended to provide a forum for presenting and
discussing cutting-edge ideas and new results, recent developments, research di-
rections and surveys on existing knowledge in the area of reduction strategies.
The previous WRS editions were: WRS 2001 (Utrecht, The Netherlands), WRS
2002 (Copenhagen, Denmark), WRS 2003 (Valencia, Spain), WRS 2004 (Aachen,
Germany) and WRS 2005 (Nara, Japan).

Reduction strategies study which subexpression(s) of an expression should be
selected for evaluation and which rule(s) should be applied. These choices affect
fundamental properties of a computation such as laziness, strictness, complete-
ness and need to name a few. For this reason some programming languages, e.g.,
Elan, Maude, *OBJ* and Stratego, allow the explicit definition of the evalua-
tion strategy, whereas other languages, e.g., Clean, Curry, and Haskell, allow
its modification. Strategies pose challenging theoretical problems and play an
important role in practical tools such as theorem provers, model checkers and
programming languages. In implementations of languages, strategies bridge the
gap between operational principles, e.g., graph and term rewriting, narrowing
and lambda-calculus, and semantics, e.g., normalization, computation of values
and head-normalization.

In addition to regular paper sessions, the workshop hosted two invited talks,
one by Richard Kieburtz, OHSU/OGI School of Science & Engineering, and the
other by Claude Kirchner, INRIA and LORIA.

I would like to thank the program committee and the additional reviewers for
providing four timely and accurate reviews for each submitted paper, the invited
speakers for accepting the program committee invitation, the authors for their
contributions, the FLoC organizers, and Portland State University for logistic
and financial support.

Portland, Oregon Sergio Antoy
July 13, 2006 Program Committee Chair



Program Committee

Sergio Antoy Portland State University
Santiago Escobar Universidad Politécnica de Valencia
Jürgen Giesl RWTH Aachen
Bernhard Gramlich Technische Universität Wien
Ralf Lämmel Microsoft Corporation
Salvador Lucas Universidad Politécnica de Valencia
Narciso Marti-Oliet Universidad Complutense de Madrid
Mizuhito Ogawa Japan Advanced Institute of Science and Technology
Jaco van de Pol Centrum voor Wiskunde en Informatica
Manfred Schmidt-Schauß Johann Wolfgang Goethe-Universität

Additional Reviewers

Bernd Braßel
Rita Loogen
Grigore Rosu
David Sabel
Traian-Florin Serbanuta
Tim Sheard
Andrew Tolmach
Alicia Villanueva

ii



Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Programmed Strategies for Program Verification
Richard B. Kieburtz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Rewriting (your) Calculus
Claude Kirchner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Reduction and Conversion Strategies for the Calculus of (co)Inductive Con-
structions: Part I

Claudio Sacerdoti Coen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

The Power of Closed Reduction Strategies
S. Alves, M. Fernández, M. Florido, I. Mackie . . . . . . . . . . . . . . . . 20

Transformation for Refining Unraveled Conditional Term Rewriting Sys-
tems

Naoki Nishida, Tomohiro Mizutani, Masahiko Sakai . . . . . . . . . . . . 34

An Account of Implementing Applicative Term Rewriting
Muck van Weerdenburg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Using Maude and its Strategies for Defining a Framework for Analyzing
Eden Semantics

Mercedes Hidalgo-Herrero, Alberto Verdejo, Yolanda Ortega-Mallén 64

New Evaluation Strategies for Functional Languages
Horatiu Cirstea, Germain Faure, Maribel Fernández, Ian Mackie,

François-Régis Sinot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Strategic Graph Rewriting
Karl Trygve Kalleberg, Eelco Visser . . . . . . . . . . . . . . . . . . . . . . . . 96

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



Programmed Strategies for Program Verification

(invited talk)

Sixth Int’l Workshop on Reduction Strategies in Rewriting and Programming (WRS’06)
S. Antoy (ed.), Seattle, Washington, August 11, 2006
Portland State University, Tech. Report 06-04, page 1

Richard B. Kieburtz

OGI School of Science & Engineering, OHSU
Portland, Oregon

Abstract

Plover is an automated property-verifier for Haskell programs that has been un-

der development for the past three years as a component of the Programatica

project. In Programatica, predicate definitions and property assertions written

in P-logic, a programming logic for Haskell, can be embedded in the text of a

Haskell program module. P-logic properties refine the type system of Haskell

but cannot be verified by type-checking alone; a more powerful logical verifier is

needed. Plover codes the proof rules of P-logic, and additionally, embeds strate-

gies and decision procedures for their application and discharge. It integrates a

reduction system that implements a rewriting semantics for Haskell terms with a

congruence-closure algorithm that supports reasoning with equality. It can em-

ploy splitting strategies to explore alternative valuations of expressions of type

Bool or other finite data types, but these strategies lead to exponential growth

of terms and must be employed cautiously. Plover itself is written in Stratego,

which has proven to be a powerful language in which to write a verifier. This talk

will explain the design and implementation of some of the strategies that enable

Plover to comprehend Haskell and to discharge some valid property assertions.



Rewriting (your) Calculus
(invited talk)

Sixth Int’l Workshop on Reduction Strategies in Rewriting and Programming (WRS’06)
S. Antoy (ed.), Seattle, Washington, August 11, 2006
Portland State University, Tech. Report 06-04, page 2

Claude Kirchner

INRIA and LORIA
Nancy, France

Abstract

Rewriting is clearly established as a general paradigm which agility eases to

express and reason about computation and deduction. The rewriting calculus,

generalizing the lambda calculus and the rewriting relation, provides us with a

theoretical and uniform foundation for this expressivity. Introduced in the late

nineties, the framework and its meta-properties are now better understood. We

will show why the calculus is well-suited to represent computation as well as

deduction, and therefore deduction modulo.

The rewriting calculus is therefore a good candidate to backup proof assis-

tants where the user can adapt the computation mechanism to its needs. But

furthermore, we want the next generation of proof assistants to provide the user

with the possibility to adapt also the deduction system to its needs. We will see

how this could be designed and how it can be used to get better higher-level

logical representation of user- defined theories.



Reduction and conversion strategies for the
Calculus of (co)Inductive Constructions: Part I

Sixth Int’l Workshop on Reduction Strategies in Rewriting and Programming (WRS’06)
S. Antoy (ed.), Seattle, Washington, August 11, 2006
Portland State University, Tech. Report 06-04, pages 3-19

Claudio Sacerdoti Coen

Department of Computer Science, University of Bologna, Italy, sacerdot@cs.unibo.it

Abstract. We compare several reduction and conversion strategies for
the Calculus of (co)Inductive Constructions by running benchmarks on
the library of the Coq proof assistant. All the strategies have been im-
plemented in an independent verifier for the proof objects of Coq that is
part of the Matita proof assistant.

1 Introduction

According to the Poincaré principle simple facts that can be automatically
verified by means of computation should not be proved explicitly with deduc-
tion steps. In theorem provers based on the Curry-Howard correspondence the
Poincaré principle is implemented by the conversion typing rule: every proof term
for P is also a proof term for Q whenever P is convertible with Q (P ' Q). The
conversion relation must be a decidable equivalence relation, and it is usually
defined as the symmetric reflexive closure of a transitive and contextual reduc-
tion relation. Usually the latter includes at least β-reduction and δ-reduction
(the substitution of a definiens with its definiendum), and it may become larger
when sigma types or primitive inductive types are introduced in the calculus.

Most of the time the amount of reduction performed in the type-checking
of a term is quite limited, consisting only of a few unfolding of definitions (δ-
reduction steps) and β-reduction steps to instantiate general properties (e.g.
symmetry) to specific arguments (the relation that is symmetric).

Sometimes, when two level reasoning is exploited, the amount of reduction
becomes significant. The two level reasoning approach [3], also called reflection,
really sticks to the Poincaré principle: an algorithm to verify a property for an
internalised form of a formula is implemented in the calculus and a proof that the
algorithm is correct is also provided; the proof of the property for a given formula
is just the application of the proof of correctness to the internalised formula
(that is computed in the meta-language). Type-checking the proof requires a
conversion check that involves running the algorithm on the formula. The latter
computation can be arbitrarily complex. For instance, recently the two level
approach has been exploited to check in the Coq system the four colour theorem,
that requires several days to be type-checked.

Strategies may play a significant role for reduction, and different reduction
strategies may lead to different convertibility checks on the reduced subterms.



4 Claudio Sacerdoti Coen

Moreover, convertibility is never checked by reducing both terms to normal form
and then testing α-conversion. On the contrary, strategies are used to guide
a controlled reduction of one or both terms, in order to quickly detect non
convertible terms (before reaching their normal forms) and in order to speed up
conversion by finding a common reduct that is not yet in normal form.

This work tries to assess the effects, on type-checking time, of reduction and
convertibility strategies for the Calculus of (co)Inductive Constructions (CIC).
In this first part we fix a conversion algorithm, called the basic conversion al-
gorithm, that is parameterized over a conversion strategy. In the next part we
will consider a second conversion algorithm, still parameterized over a conver-
sion strategy, that outperforms the one described here and that is also used
in the Coq proof assistant. Studying both algorightms helps in understanding
the importance of the conversion and reduction strategies independently of the
conversion algorithm.

To perform the benchmarks we have implemented the strategies in the ker-
nel of the Matita interactive theorem prover (http://matita.cs.unibo.it) that is
compatible with the proof terms exported from the Coq proof assistant [8]. So
we can run the benchmarks on the library of Coq, that comprises about 40,000
theorems and definitions, several of them proved with two level reasoning.

In Sect. 2 we describe the syntax, reduction and convertibility rules of CIC.
In Sect. 3 we describe the basic conversion algorithm that is a generalisation of
the simplest syntax directed algorithm for testing convertibility. In Sect. 4 we
compare several reduction and convertibility strategies for the basic conversion
algorithm and the reduction procedure it calls. Conclusions and future work are
in Sect. 5, that is followed by two appendices that detail the benchmarks we
performed.

2 The Calculus of (co)Inductive Construction

We present now the Calculus of (co)Inductive Constructions with de Bruijn
indexes, and its reduction and extended conversion rules. We omit the typing
rules, the pragmatic and also the meta-theory of the calculus since they are not
relevant to this work. The presentation we give is adapted from the author’s PhD.
thesis [7] and is as close as possible to the calculus implemented in the proof
assistant Coq, version 8.0. It is also a strict subset of the calculus implemented
in the proof assistant Matita under development at the University of Bologna.

2.1 The Syntax

With a small notational abuse, all the sequences indexed from 1 to n will also
comprise the empty sequence, unless stated otherwise. Moreover, for the sake of
readability, we adopt the compressed syntax

−−→
φ[α] for the list φ[1] . . . φ[n] where

each list item φ[i] is obtained by syntactically replacing α with i. The dual
notation

←−−
φ[α] stands for the same list in reverse order. When two compressed

expressions indexed by the same Greek variable occur in the same term, the two



Strategies for the Calculus of (co)Inductive Constructions 5

expanded lists are meant to have the same length. If two compressed expressions
indexed by the same Greek variable are nested, each variable is meant to be
bound in the innermost compressed list.

In the rest of the paper we reserve c, c1, . . . , cn for constant names, i, i1, . . . , in
for inductive type names, k, k1, . . . , kn, k1

1, . . . , k
1
n1

, . . . , km
1 , . . . , km

nm
for inductive

constructor names, s, s1, . . . , sn for sorts of the form Set, Prop, Type(j) for some
j, t, f, u, T, U, N,M for well formed terms and j, n, m, l, r for positive integers.

Table 1. CIC terms syntax

t ::= n de Bruijn index
| c constant
| i (co)inductive type
| k (co)inductive constructor
| Set | Prop | Type(j) sort
| t t application
| λ : t.t λ-abstraction
| λ := t.t local definition
| Π : t.t dependent product
| 〈t〉ht{−→t } case analysis

| µl{
−−−−−→
t : t/nα} well-founded mutually recursive definition

| νl{−−→t : t} mutually corecursive definitions

Well formed terms are inductively defined in Table 1. We will use parentheses
to disambiguate expressions and we assume the usual convention that application
is left associative and λ-abstraction and local definition are right associative.

Note that, in CIC, there is no syntactic distinction between terms and types.
For the sake of clarity, we will write unknown terms as T if meant to be types
and as f if meant to be function bodies.

Only the last three constructors deserve an explanation, all the others coming
from the theory of Pure Type Systems [1] and from the Extended Calculus
of Constructions [5]. We just remind that local definition, λ-abstractions and
dependent products bind a single variable in their second argument. The first
argument is the type of the bound variable for λ-abstractions and dependent
products; it is the definiens for local definitions.

The case analysis constructor 〈T 〉ht{−→tα} performs pattern matching on the
term t, that must inhabit an inductive type family with h parameters. One
branch tα is associated to each constructor of the inductive type, with the in-
tended meaning that, if t reduces to the application (ki t1 . . . th t′1 . . . t′n), the
whole expression will reduce to the branch ti applied to t′1 . . . t′n. The arguments
t1 . . . th are dropped since they are used only for typing purposes to identify
the family instance. Finally, the term T can be thought of as the dependent type
of each branch and is also used for typing purposes only.



6 Claudio Sacerdoti Coen

Example 1. Let List be a family of inductive types indexed by one parameter A
that is the type of the elements of the list, and let Empty of type ΠA : Set.ListA
and Cons of type ΠA : Set.Πh : A.Πt : ListA.ListA be its constructors. The
function that returns true if its argument is an empty list can be defined as

λA : Set.λl : List A.
match l with Empty ⇒ true | Cons he tl ⇒ false
return type λ : List A.bool

in an ML-like syntax with bound variables, that in CIC syntax with de Bruijn
indexes becomes

λ : Set.λ : List 1.〈λ : List 2.bool〉11{true ; λ : 2.λ : List 2.false}

If we apply the term to bool and (Cons bool true (Empty bool)) and we perform
two β-reduction steps we obtain

〈λ : List bool.bool〉1(Cons bool true (Empty bool)){true ; λ : bool.λ : List bool.false}

that in one step (see Sect. 4) reduces to

(λ : bool.λ : List bool.false) true Empty bool

Notice that the actual parameter bool of the constructor Cons is thrown away
during reduction, since it instantiates a family parameter (as reminded by the
subscript 1 that says that there is only one family parameter expected).

The µl{
−−−−−−−→
tα : Tα/nα} constructor simultaneously defines a block of mutual

recursive functions and returns the l-th function in the block. The α-th function
in the block has body tα and type Tα and is defined by structural recursion over
his nα-th argument. Each defined function is bound in the bodies, but not in
the types.

Example 2. To the following fragment of ML-like code

let rec reverse (acc : List bool) (l : List bool) =
match l with

Empty => acc
| Cons he tl => reverse (Cons he acc) tl

in reverse

corresponds the following CIC term

µ1{λ : List bool.λ : List bool.
〈λ : List bool.List bool〉11{2 ; λ : bool.λ : List bool.5 (Cons bool 2 4) 1)

: Π : List bool.Π : List bool.List bool
/2}

The νl{
−−−−→
tα : Tα} defines a block of mutually co-recursive functions and picks

the l-th defined function; it is syntactically very similar to µl{
−−−−−−−→
tα : Tα/nα}, but for

the third argument of each recursive function that is missing in the co-recursive
case.



Strategies for the Calculus of (co)Inductive Constructions 7

Lifting and Substitution Since we have adopted a syntax based on de Bruijn
indexes, we do not have to worry about α-conversion, but: 1) we need to in-
troduce a lifting operation (see Table 2) to move terms under one or several
binders; 2) we need to define a substitution operation (see Table 3) to replace
the first de Bruijn index with a term that avoids capturing on the substituted
term and also decrements all the free de Bruijn indexes that are not substituted.
The definition of the two functions is completely standard.

Table 2. Lifting

↑m t =↑m0 t

↑mb n = n if n <= b
↑mb n = n + m if n > b
↑mb t = t if t ∈ {c, i, k, Set, Prop, Type(j)}
↑mb (t1 t2) =↑mb t1 ↑mb t2
↑mb λ : T.t = λ :↑mb T. ↑mb+1 t
↑mb λ := t1.t2 = λ :=↑mb t1. ↑mb+1 t2
↑mb Π : T.t = Π :↑mb T. ↑mb+1 t

↑mb 〈t〉ht′{−→tα} = 〈↑mb t〉h ↑mb t′{−−−→↑mb tα}
↑mb µl{

−−−−−−−→
tα : Tα/nα} = µl{

−−−−−−−−−−−−−→↑mb+r tα :↑mb Tα/nα}
↑mb νl{

−−−−−−−→
tα : Tα/nα} = νl{

−−−−−−−−−−−−−→↑mb+r tα :↑mb Tα/nα}

Table 3. Substitution

m{N/m} =↑m−1 N
n{N/m} = n if n < m
n{N/m} = n− 1 if n > m
t{N/m} = t if t ∈ {c, i, k, Set, Prop, Type(j)}
(t1 t2){N/m} = t1{N/m} t2{N/m}
(λ : T.t){N/m} = λ : T{N/m}.t{N/m + 1}
(λ := t1.t2){N/m} = λ := t1{N/m}.t2{N/m + 1}
(Π : T.t){N/m} = Π : T{N/m}.t{N/m + 1}
(〈t〉ht′{−→tα}){N/m} = 〈t{N/m}〉ht′{N/m}{−−−−−−→tα{N/m}}
(µl{
−−−−−−−→
tα : Tα/nα}){N/m} = µl{

−−−−−−−−−−−−−−−−−−−−−−→
tα{N/m + r} : Tα{N/m}/nα}

(νl{
−−−−−−−→
tα : Tα/nα}){N/m} = νl{

−−−−−−−−−−−−−−−−−−−−−−→
tα{N/m + r} : Tα{N/m}/nα}



8 Claudio Sacerdoti Coen

2.2 Reduction, Convertibility, Cumulativity

Reduction is defined only for CIC terms that are closed in a given environment
and context.

An environment E associates constant definitions to constant names, decla-
rations of mutually (co)inductive types to inductive names and declarations of
constructors of mutually (co)inductive types to constructor names. For the sake
of reduction only, an environment can be seen as an abstract data type with
only one lookup operation E(c) that returns the definiens of c in E.

A context Γ is an ordered list of anonymous declarations (: T ) or definitions
(:= t). If the de Bruijn index i occurs free in a term, it is supposed to be an
occurrence of the i-th “constant” declared or defined in Γ . We write Γ (i) = t to
say that the i-th entry in Γ is a definition whose definiens is t.

Table 4. Reduction

E[Γ ] ` (λ : T.M)N Bβ M{N/1} β-reduction
E[Γ ] ` λ := t.M Bζ M{t/1} ζ-reduction
E[Γ ] ` c Bδ t if E(c) = t δ-reduction
E[Γ ] ` n Bδ ↑n t if Γ (i) = t δ-reduction

E[Γ ] ` 〈T 〉h(kj t1 . . . th t′1 . . . t′nj
){−→fα}Bι (fj t′1 . . . t′nj

) ι-reduction

E[Γ ] ` µj{
−−−−−−−→
fα : Tα/nα} t1 . . . tnj−1 (k t′1 . . . t′m)

Bµfj

−−−−−−−−−−−−−−−→
{µα{

−−−−−−−→
fβ : Tβ/nβ}/1} t1 . . . tnj−1 (k t′1 . . . t′m) µ-unfolding

E[Γ ] ` 〈T 〉h(νj{
−−−−→
fα : Tα}){−→tβ}Bν 〈T 〉h(fj

−−−−−−−−−−−→
{να{

−−−−→
fγ : Tγ}/1}){−→tβ} ν-unfolding

B is the reflexive, transitive and contextual closure of Bβ ∪Bζ ∪Bδ ∪Bι ∪Bµ ∪Bν

In Table 4 we have collected all the one step reduction rules of CIC. The
formulation of β-, ζ-and δ-reduction is the standard one when de Bruijn indexes
are used. Definiens coming from the environment E are not lifted during δ-
reduction since the typing rules grant that every definiens in E is a closed term.
On the contrary, a term in Γ can depend on the terms occurring after it in Γ ,
seen as an ordered list. Thus the need for the lifting.

The ι-reduction rule has already been discussed in Sect. 2.1. The µ- and ν-
unfolding rules, usually also called ι-reduction rules, are restricted forms of the
usual unfolding rule given by (co)fixpoints. In particular, a recursive function
definition can be unfolded only when applied to a constructor (possibly applied
to some arguments) and, dually, a co-recursive function definition can be un-
folded only when it is the argument of a destructor (here called case analysis).
Together with additional typing restrictions, this is sufficient to grant strong
normalisation [9, 2] for the well-typed terms of the calculus (supposing E and
Γ also well-typed). Notice that the constraint on the unfolding of co-recursive
functions forces a call-by-name strategy for the co-recursive fragment: unfolding
is allowed only when the function is in head position.



Strategies for the Calculus of (co)Inductive Constructions 9

Table 5. Convertibility and cumulativity

The convertibility equivalence relation ' is the symmetric closure of B.
E[Γ ] ` T1 � T2 (i.e. T1 is a “subtype” of T2 up to universe cumulativity) iff

– T1 =βδιζ T2 or
– T1 = Type(i) and T2 = Type(j) and i ≤ j or
– T1 = Prop and T2 = Type(i) or
– T1 = Set and T2 = Type(i) or
– T1 = Πx : S1.T

′
1 and T2 = Πx : S2.T

′
2 and S1 ' S2 and T ′

1 � T ′
2

Convertibility and Cumulativity Convertibility is defined in Table 5. Since
the reduction relation is strongly normalising, convertibility is trivially decidable
by reducing both terms to their normal form and syntactically comparing them.
Conversion and reduction strategies to decide convertibility avoiding unnecessary
computation are the topic of this paper and will be explored in further sections.

In the tradition of the Extended Calculus of Constructions [5], the convert-
ibility relation is weakened to an order relation called cumulativity that takes
into account the inclusion of lower universes into higher ones and that is also
defined in Table 5.

Cumulativity plays the role of a subtype relation in the typing rules of CIC.
Since any algorithm that decides convertibility can be easily adapted to decide
cumulativity, we will speak of conversion strategies including also strategies to
decide cumulativity. Moreover, in the rest of the paper we will consider only
algorithms that decide convertibility.

3 The Basic Conversion Algorithm

In this section we present the idea behind a simple algorithm to test convertibility
that is easily adapted to cumulativity. We call it the basic conversion algorithm.
The algorithm will be presented as an almost syntax directed judgement that,
seen as a rewriting system, presents critical pairs that must be solved using
strategies. Moreover, the judgement is parameterised over a class of reduction
algorithms that leave great freedom in the choice of the reduction strategy. In
the following section we will discuss a few strategies.

The basic conversion algorithm can be regarded as folklore for calculi simpler
than CIC. In [6] it is presented for the pure Calculus of Constructions. It consists
in intertwining weak head reduction steps with α-conversion steps, according to
the observation that two terms in weak head normal form can be equivalent only
if their fixed heads are so.

Instead of presenting the algorithm in its usual form, in Fig. 1 we provide a
new judgement E[Γ ] ` t1 ↓ t2 that can be proved to be equivalent to E[Γ ] `
t1 ' t2, but that is more direct to implement since it is almost syntax directed.
The last two rules are parameterised over another judgement E[Γ ] ` tBh t′ that
must satisfy the following property.



10 Claudio Sacerdoti Coen

E[Γ ] ` t ↓ t
t ∈ {n, c, i, k, s}

E[Γ ] ` T ↓ T ′ E[Γ ; (: T )] ` t ↓ t′

E[Γ ] ` λ : T.t ↓ λ : T ′.t′

E[Γ ] ` t1 ↓ t′1 E[Γ ] ` t2 ↓ t′2

E[Γ ] ` (t1 t2) ↓ (t′1 t′2)

E[Γ ] ` t ↓ t′ E[Γ ] ` T ↓ T ′ −−−−−−−−−−→
E[Γ ] ` tα ↓ t′α

E[Γ ] ` 〈T 〉ht{−→tα} ↓ 〈T ′〉ht′{
−→
t′α}

−−−−−−−−−−−→
E[Γ ] ` Tα ↓ T ′

α

−−−−−−−−−−−−−−−→
E[Γ

−−−→
(: Tα)] ` fα ↓ f ′

α

E[Γ ] ` µj{
−−−−−−−→
fα : Tα/nα} ↓ µj{

−−−−−−−→
f ′

α : T ′
α/nα}

E[Γ ] ` t1 ↓ t′1 E[Γ ; (:= t1)] ` t2 ↓ t′2

E[Γ ] ` λ := t1.t2 ↓ λ := t′1.t
′
2

−−−−−−−−−−−→
E[Γ ] ` Tα ↓ T ′

α

−−−−−−−−−−−−−−−→
E[Γ

−−−→
(: Tα)] ` fα ↓ f ′

α

E[Γ ] ` νj{
−−−−→
fα : Tα} ↓ νj{

−−−−→
f ′

α : T ′
α}

E[Γ ] ` T ↓ T ′ E[Γ ; (: T )] ` t ↓ t′

E[Γ ] ` Π : T.t ↓ Π : T ′.t′

Conv-Whd-l
E[Γ ] ` t1 Bh t′1 E[Γ ] ` t′1 ↓ t2

E[Γ ] ` t1 ↓ t2

Conv-Whd-r
E[Γ ] ` t2 Bh t′2 E[Γ ] ` t1 ↓ t′2

E[Γ ] ` t1 ↓ t2

Fig. 1. Almost syntax directed convertibility judgement

Definition 1 (Weak head progress). A judgement E[Γ ] ` t Bh t′ satisfies
weak head progress (or, abusing the standard terminology, is a weak head re-
duction) if whenever the judgement holds we have that either t has no redex in
head position and t and t′ are the same term, or t has a redex in head position,
E[Γ ] ` t B t′ and the redex in head position in t has been reduced in the latter
reduction.

The redex in head position in a CIC term is defined as follows:

Definition 2 (Redex in head position (r.h.p.)). The terms i, k, Set, Prop,
Type(j), λ : T.t,Π : T.t, µl{

−−−−−−−−→
tα : T alpha}, νl{

−−−−−−−−→
tα : T alpha} have no r.h.p. The

terms n, c are a r.h.p. if they can be δ-reduced. The term (t1 t2) is a r.h.p. if
it is a β-redex (i.e. t1 is a λ-abstraction) or if it is a µ-redex (i.e. t1 is an
application (µl{

−−−−−−−−−−−−−−−→
t alpha : T alpha/nα} t′1 . . . t′nl−1) and t2 is a constructor or

the application of a constructor to some arguments). If (t1 t2) is not a r.h.p.
then its r.h.p. (if there is one) is: the r.h.p. of t1 (if there is one) if t1 is not
an application (µl{

−−−−−−−−−−−−−−−→
t alpha : T alpha/nα} t′1 . . . t′nl−1); the r.h.p. of t2 (if there

is one) otherwise. The term 〈T 〉ht{−→tα} is a r.h.p. if it is a ι-redex (i.e. if t is a
constructor) or if it is a ν-redex (i.e. t is a co-recursive function definition). If
the term 〈T 〉ht{−→tα} is not a r.h.p., then its r.h.p. (if there is one) is the r.h.p.
of t (if there is one).

The reader that considers quite baroque the previous definition (and conse-
quently also the reduction rules of the calculus) can try to develop by himself
the calculus that is to CIC what the λ̄-calculus [4] is to the λ-calculus. In that



Strategies for the Calculus of (co)Inductive Constructions 11

representation the terms of the calculus are actually states of a reduction ma-
chine and the subterm in head position is clearly separated from its context,
leading to a cleaner and more elegant definition of the reduction rules and the
weak head normal forms (w.h.n.f.). This unpublished representation of the term
is also actually used in the kernel of Coq to implement lazy reduction and, of top
of it, the convertibility and cumulativity checks. However, this representation is
way less understandable to the user, requiring a transparent translation back
and forth to the syntax adopted in this paper. We will better describe it in the
second part of the present work, where it can be better appreciated.

A first important observation on weak head reduction judgements is that they
do not need to be implemented in the usual way, that consists of performing the
usual call-by-name computation of the w.h.n.f. of the input. Indeed, only one
head reduction step is required and moreover reduction in non-head position
is allowed. The latter observation tells us that we can employ any reduction
strategy we want, such as call-by-name and call-by-need, and any reduction
technology such as reduction machines or term rewriting systems.

The second important observation is that the new convertibility judgement
is not completely syntax directed, since most of the rules form a critical pair
with the Conv-Whd-l or the Conv-Whd-r rule any time one of the two terms is
not in w.h.n.f. However, there exists one and only one complete strategy that
does not employ backtracking. It is the strategy that always applies one of the
Conv-Whd-* rules, unless the two terms are already in w.h.n.f. Since reduction
on well typed terms is strongly normalising, the two rules cannot be applied for
ever. We call this the simplest convertibility strategy. Any other strategy can be
completed by means of backtracking: every time one of the two terms is not
yet in weak head normal form and the strategy prefers a different rule over the
appropriate Conv-Whd-* rule, in case of failure the rule Conv-Whd-* rule must
be immediately applied before continuing as before.

We analyse now the impact of several reduction and conversion strategies on
the efficiency of the basic convertibility algorithm.

4 Reduction and Conversion Strategies

The simplest convertibility strategy allows to quickly detect non convertible
terms without performing full reduction. Instead, if the two terms are convertible,
no computation is avoided. Interactive theorem provers that record proof terms
that are certified by a trusted kernel use convertibility and type-checking in
two different places: inside the kernel (to check the correctness of the terms
produced outside) and outside the kernel, for instance in the implementation
of tactics. Since the kernel is supposed to check well typed terms, for the first
usage we expect the two terms to be always convertible. Thus, at least in this
case, the simplest convertibility strategy is not very satisfactory (see benchmarks
in App. B). Thus in the next sections we will explore different convertibility
strategies to optimise this particular case.



12 Claudio Sacerdoti Coen

4.1 An Improved Convertibility Strategy

We assume now that the two terms whose convertibility must be checked are
almost always convertible. One special case of convertibility is α-convertibility,
that reduces to a check for identity when de Bruijn indexes are employed. Identity
is recognised by our judgement when we use the strategy that never applies the
rules Conv-Whd-l and Conv-Whd-r. We call this (incomplete) strategy the α-
convertibility strategy (even if we employ de Bruijn indexes).

Actually, our statistics show that, when type-checking real world terms, most
of the terms checked for convertibility are actually identical. This suggest a
simple but very effective strategy: the reduction rules Conv-Whd-* are used
only to make the α-convertibility strategy complete, as explained in Sect. 3.
More concretely, the two terms are recursively compared using every rule but
Conv-Whd-*; if the comparison fails, they are both reduced to w.h.n.f. and
compared again. A second failure grants that the two terms are not convertible.

The benchmarks in App. B show a remarkable improvement over the simplest
convertibility strategy. We observe that the improvement does not derive only
from the reduced reduction time: since weak head normal forms are usually larger
than the input terms, checking convertibility of their normal forms requires a
significantly larger amount of time that is saved in the new strategy.

4.2 Further Improvement of the Convertibility Strategy

Let us consider now the improved convertibility strategy of the previous section.
The strategy is optimal for identical terms. Let t1 and t2 be the two smallest
non identical subterms in corresponding position (i.e. in two identical contexts).
To check their convertibility, both terms are reduced to their w.h.n.f., possibly
performing other reduction steps as well according to the reduction strategy.

In practice, our statistics say that quite often one term can be reduced to
the other one without computing the w.h.n.f. This is for instance the case when,
during a proof, the user unfolds a definition (performs a δ-reduction step). In
this case the two terms to be compared will be the δ-redex and its δ-reduct. As
before, we would like to avoid unnecessary computation but also the additional
time spent in checking convertibility of large w.h.n.f.

The way to improve the situation is: 1) to be able to detect in advance which
one of the two terms is more likely to reduce to the second one; 2) reduce it only
until the second one or a w.h.n.f. is reached.

Empirical observations suggest that, in CIC, long chains of β-reduction steps
are rare and that either the bound variable occurs linearly or the substituted
terms are small (i.e. they are formulae, but not long proof terms). Moreover
real computations exploited by the user correspond to long chains of ι- and µ-
or ν-reduction steps and are unlikely to be avoidable during convertibility. The
conclusion is that δ-reduction steps are the important ones to address, since they
often produce large reducts that can even start long reduction chains. Here we
will address only δ-reduction steps of constants for implementation reasons.



Strategies for the Calculus of (co)Inductive Constructions 13

To control δ-reduction steps we propose a strategy that behaves as the one in
the previous paragraph until the first comparison fails. In this case it performs
weak reduction of both t1 and t2 avoiding δ-steps for constants, until a normal
form is reached. There are now three possibilities: 1) both terms are in w.h.n.f.
and the algorithm proceeds with the second pass; 2) one term has a head δ-
redex and the other one is a w.h.n.f.: the first term is reduced to w.h.n.f. before
proceeding with the second pass; 3) both terms have head δ-redexes: we use
a heuristic to decide what term (or terms) must be head reduced and when
reduction should stop.

The heuristic we propose is based on the following metric.

Definition 3 (Height of a constant). Let E be an environment. The height
h(c) of a constant c such that E(c) = t is defined by h(c) = 1+

∑
c′∈t h(c′) where

c′ ∈ t if c′ occurs in t. If no constant occurs in c the height of c is 1.

We claim that in practice it is often the case that given a δ-redex (c t1 . . . tn)
whose δ-reduct reduces to (c′ t′1 . . . t′m) we have h(c) > h(c′).

For instance, consider the two convertible terms (∗ 1000 100) and
(+ 100 (∗ 999 100)) that have both a δ-redex in head position. The former
term reduces to the latter and since product is defined in terms of addition, we
have h(∗) > h(+). Thus it is a good idea to perform head reduction on the first
term unless a δ-redex in head position of height less than h(+) is found. If the
reduced term has height h(+), we can hope that its head is an addition and that
the two terms are now convertible. This is indeed the case in our not so artificial
example.

As a counterexample to the property above, if c is defined as the identity
function then we have (c c′) Bh c′ and 1 = h(c) 6> h(c′). Notice that this is quite
a rare case: it can occur only if the argument of a constant can occur in head
position during reduction.

According to the previous metric, the heuristic of our new strategy is defined
as follows: the height h1 and h2 of the two head δ-redices are compared; if one
(say h1) is greater than the other, its term is head reduced until it becomes a
w.h.n.f. or a δ-redex of height less or equal to h2; otherwise both terms are head
reduced until they become w.h.n.f. or a δ-redex of height less than h1. Then the
algorithm proceeds with the second pass.

The benchmarks in App. B show that the proposed improvement is really
effective in decreasing type-checking time, independently from the reduction
strategy it is associated with. The improvement could also be applied to the code
of the Coq proof assistant, that right now delays δ-conversion as we suggest, but
does not exploit any heuristic similar to ours both to choose which term must
be reduced when two δ-redexes are met and to guide the reduction avoiding
intermediate usually useless convertibility checks.

4.3 Reduction Strategies

Having considered three different convertibility strategies, we want now to com-
pare their behaviour when combined with different reduction strategies. To make



14 Claudio Sacerdoti Coen

the comparison, in our PhD. thesis [7] we have described GKAMCIC , a generic
reduction machine, based on the abstract machine of Krivine, that is parame-
terised over the reduction strategy.

The status of the Krivine’s abstract machine (KAM) is made of an environ-
ment, a code and a stack. The code is the term to be reduced. Its free variables
are assigned values by the environment, that plays the role of an explicit simul-
taneous substitution. When an application is processed, its argument is moved
to the stack together with a pointer to the environment, forming a closure. When
a λ-abstraction (part of a β-redex) is processed, the top of the stack is simply
moved to the top of the environment. Finally, when a de Brujin index is pro-
cessed, the n-th component of the stack is fetched and becomes the new term to
be processed (together with the new environment). As an example, consider the
following reduction of the identity function applied to a closed term t:

〈∅, (λ.1 t), ∅〉B 〈∅, λ.1, 〈∅, t〉.∅〉B 〈∅.〈∅, t〉, 1, ∅〉B 〈∅, t, ∅〉

Since the argument t is never reduced before reaching the weak head position,
the machine implements a call-by-name strategy. The GKAMCIC (Generalized
KAM for CIC) generalizes the KAM in three ways. 1) Arbitrary reductions of
the argument of an application are now allowed when the argument is moved to
the stack, to the environment or in code position. This way any kind of reduction
strategy can be implemented. 2) The data structures of the elements of the stack
and of the environment become parameters. This helps in implementing strate-
gies such as call-by-need. As a consequence, we also introduce as parameters
read-back functions from stack and environment items to terms. The read-back
functions are used when the machine becomes stuck to map the machine status
to the corresponding computed term. 3) The machine is extended to CIC.

We describe now the generic reduction machine, that is parameterised over
a few functions and datatypes that are instantiated by each reduction strategy.
The machine is actually implemented as an ML functor whose input is a module
that describes the reduction strategy.

Definition 4 (Closures, environments and stacks of the GKAMCIC).
Let EItem and SItem be datatypes to be instantiated by the strategy.
Environment

def
= EItem List; Stack

def
= SItem List;

Closure
def
= Environment ∗ Term; Configuration

def
= Environment ∗ Term ∗ Stack

The following functions must be instantiated by the strategy:
to stack : Closure → SItem; to env : SItem → EItem;
from env : SItem → Configuration; Ts : SItem → Term; Te : EItem → Term
For each strategy there must be a strict and well-founded order <E ⊆ Environment2

such that ∀ξ : Environment .∀α : EItem .ξ <E ξ.α

The transition rules for the GKAMCIC are shown in Table 6. The initial
configuration of the machine to reduce a term t is (∅, t, ∅). The final configu-
rations of the machine are the special configurations (−, (ξ, t, S),−). We write
R(ξ, t, S) = (ξ′, t′, S′) if the machine reduces in many steps the configuration
(ξ, t, S) to the configuration (−, (ξ′, t′, S′),−).



Strategies for the Calculus of (co)Inductive Constructions 15

T
a
b
le

6
.
G

K
A

M
C

I
C

re
d
u
ct

io
n

ru
le

s
B

ef
o
re

A
ft

er

E
n
v
.
C

o
d
e

S
ta

ck
E

n
v
.

C
o
d
e

S
ta

ck
ξ

i
(w

h
er

e
i
≤
|ξ
|)

S
π

1
(f

ro
m

en
v

ξ i
)

π
2
(f

ro
m

en
v

ξ i
)

π
3
(f

ro
m

en
v

ξ i
).

S

ξ
i

(w
h
er

e
i
>
|ξ
|a

n
d

Γ
(i
−
|ξ
|)

=
b)

S
∅

↑i
−
|ξ
|
b

S
ξ

i
(o

th
er

w
is

e)
S

-
(ξ

,i
,S

)
-

ξ
c

(w
h
er

e
E

(c
)

=
b)

S
∅

b
S

ξ
c

(o
th

er
w

is
e)

S
-

(ξ
,c

,S
)

-
ξ

i
S

-
(ξ

,i
,S

)
-

ξ
k

S
-

(ξ
,k

,S
)

-
ξ

s
∅

-
(∅

,∅
,s

,∅
)

-
ξ

Π
:
T

.t
∅

-
(ξ

,Π
:
T

.t
,∅

)
-

ξ
λ

:
T

.M
α
.S

ξ.
(t

o
en

v
α
)

M
S

ξ
λ

:
T

.M
∅

-
(ξ

,λ
:
T

.M
,∅

)
-

ξ
M

N
S

ξ
M

(t
o

st
a
ck

(ξ
,N

))
.S

ξ
λ

:=
M

.N
S

ξ.
to

en
v

(t
o

st
a
ck

(ξ
,M

))
N

S
ξ

〈T
〉 h

t{
−→ t α
}

(w
h
en
†1

h
o
ld

s)
S

ξ
t i

I
′ 1
..

.I
′ l
.S

ξ
t 0

=
〈T
〉 h

t{
−→ t α
}

(o
th

er
w

is
e)

S
-

(ξ
,t

0
,S

)
-

ξ
µ

l{
−−
−−
−−
−→

f α
:
T

α
/
n

α
}

(w
h
en
†2

h
o
ld

s)
S

ξ.
←−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−

to
en

v
(t

o
st

a
ck

(ξ
,µ

α
{−
−−
−−
−−
−−
−−
→

f α
:
T

α
/
n

a
lp

h
a
})

)
f i

S
′′

ξ
t 0

=
µ

l{
−−
−−
−−
−→

f α
:
T

α
/
n

α
}

(o
th

er
w

is
e,

)
S

-
(ξ

,t
0
,S

′′
)

-

ξ
t 0

=
ν

l
{−
−−
−→

f α
:
T

α
}

S
-

(ξ
,t

0
,S

)
-

†1
:

L
et
R

(ξ
,t

,S
)

=
(ξ

1
,t

1
,S

1
).

If
t 1

=
ν

l{
−−
−−
→

f α
:
T

α
}

th
en

le
t
R

(ξ
1
.←
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−

to
en

v
(t

o
st

a
ck

(ξ
1
,ν

α
{−
−−
−−
−−
−−
−−
−−
→

f
a
lp

h
a

:
T

a
lp

h
a
})

),
f l

,S
1
)

=
(ξ

2
,t

2
,S

2
).

O
th

-
er

w
is

e
le

t
(ξ

2
,t

2
,S

2
)

=
(ξ

1
,t

1
,S

1
).

T
h
e

ru
le

is
fi
re

d
o
n
ly

if
(t

2
,S

2
)

=
(k

i
,I

1
..

.I
h
.I

′ 1
..

.I
′ l
).

†2
:

L
et
R

(f
ro

m
en

v
(t

o
en

v
(S

n
l
))

)
=

(ξ
′ ,

t′
,S

′ )
a
n
d

le
t

S
′′

b
e

eq
u
a
l

to
S

b
u
t

fo
r

th
e

n
l-
th

en
tr

y
th

a
t

is
re

p
la

ce
d

w
it

h
to

st
a
ck

(∅
,T

(ξ
′ ,

t′
,S

′ )
).

T
h
e

ru
le

is
fi
re

d
if

t′
is

a
co

n
st

ru
ct

o
r.

N
o
te

th
a
t

S
′′

is
u
se

d
a
n
y
w

ay
a
ls

o
in

th
e

ru
le

th
a
t

is
a
p
p
li
ed

w
h
en

th
is

ru
le

fa
il
s.

T
h
e

sa
m

e
ru

le
s

m
o
d
ifi

ed
p
o
si

n
g

S
′′

=
S

a
re

a
ls

o
a
d
m

is
si

b
le

a
s

ca
ll
-b

y
-n

a
m

e
va

ri
a
n
ts

;
in

th
is

va
ri

a
n
t

th
e

re
a
d

b
a
ck

fu
n
ct

io
n
s

a
re

n
ev

er
u
se

d
b
y

th
e

re
d
u
ct

io
n

lo
o
p
.



16 Claudio Sacerdoti Coen

We define the following read-back functions from machine configurations and
closures to terms:

Definition 5. Read-back functions

T (−, (ξ, t, S),−)
def
= T (ξ, t, S)

T (ξ, t)
def
= T (ξ, t, ∅)

T ([α1, . . . , αn], t, [β1, . . . βm])
def
=

(t{ Te(α1)/1 ; . . . ; Te(αn)/n} Ts(β1) . . . Ts(βm)))

where the simultaneous substitution {σ}m maps every de Bruijn index in its
domain to its image.

We can now implement head reduction as reduction of the initial machine
configurations followed by read-back: E[Γ ] ` t Bh t′′ iff R(∅, t, ∅) = (ξ, t′, S) and
T (ξ, t′, S) = t′′.

The following correctness and liveness conditions on reduction strategies
grant the corresponding properties for the reduction machine (proof given in [7]).

Definition 6. GKAMCIC Correctness Conditions:

1. ∀(ξ, t) : Closure .T (ξ, t) B Ts(to stack (ξ, t))
2. ∀α : SItem .Ts(α) B Te(to env α)
3. ∀α : EItem .Te(α) B T (from env α)

Definition 7. GKAMCIC Liveliness Condition: π1◦from env ◦hd◦π1 is strictly
decreasing according to the ordering <E; πn stands for the n-th projection of a
tuple.

A few benchmarks comparing different reduction strategies are given in App. B.
App. A shows how the GKAMCIC can be instantiated to obtain a few typical
reduction strategies used in the benchmarks. Notice that we allow ourselves to
call recursively R( , , ) and T ( , , ) even if the calls are not tail recursive. Non
tail recursive calls are usually not allowed in reduction machines for performance
reasons. What we gain is the ability to switch the reduction strategy easily for
direct comparison.

The benchmarks stress our feeling that, at least in the average case, avoiding
reduction and hence comparison of usually larger reducts is better than opti-
mising reduction. We can observe this in two different ways: 1) convertibility
strategies seem more effective than reduction strategies; 2) call-by-name (also
in the call-by-need variant) gives better results than call-by-value, and a strat-
egy that is somehow intermediate between the two of them from the point of
view of convertibility or reducts gives intermediate results. However, we can also
observe the existence of a very heavy theorem that can be type-checked in rea-
sonable time only in a call-by-value setting. Similar theorems, all based on two
level reasonings, are also found outside the standard library, in the user con-
tributions. Notice, however, that several other theorems proved with the same
approach in the standard library are type-checked in a reasonable time with our
best combination of strategies.



Strategies for the Calculus of (co)Inductive Constructions 17

5 Conclusions and Future Work

We have presented the basic conversion algorithm, a simple almost syntax di-
rected judgement to test convertibility (and with minimal modifications also cu-
mulativity) of terms of the Calculus of (co)Inductive Constructions (CIC). Both
convertibility and reduction strategies can be imposed to obtain executable al-
gorithms from the judgement. We have presented a few improvements on the
simplest convertibility strategy and we have assessed their effect with bench-
marks on a real world library. One of the improvements could also be applied to
the code of the Coq proof assistant, with expected performance increasing. We
have also presented a generic reduction machine parameterised over the reduc-
tion strategies. The machine has been used to perform the benchmarks, varying
over the reduction strategy.

The aim of the paper was mainly investigative, since, as far as we know,
precise comparisons of several reduction strategies for CIC and their role in
type-checking are not available in the literature.

Even with the best convertibility and reduction strategy the benchmarks
show that, for a few theorems, the basic conversion algorithm is not competi-
tive with the one now adopted in the Coq proof assistant. Profiling the code it
becomes evident that the bottleneck is the read-back function T that is invoked
after each reduction, to convert configurations back to terms. Thus the evident
improvement consists in avoiding the read-back function, considering a new al-
most syntax directed and strategy driven judgement to check convertibility over
machine configurations. This solution, that is the one adopted for a particular
strategy in the Coq proof assistant, has also been implemented in Matita giving
results compatible with the ones of Coq. The description of this alternative al-
gorithm and the effects of strategies for it will be the subject of the second part
of this work.

References

1. H. P. Barendregt. “Lambda calculi with types”, Handbook of logic in computer
science (vol. II), pages 117–309, 1992.

2. E. Gimenez. “Codifying guarded definitions with recursive schemes”. Proceedings
of the 1994 Workshop on Types for Proofs and Programs, LNCS 996, pages 39-59.

3. J. Harrison. “Metatheory and reflection in theorem proving: A survey and critique”.
Technical Report CRC-053, SRI Cambridge, 1995.

4. H. Herbelin. Séquents qu’on calcule: de l’interprétation du calcul des séquents
comme calcul de lambda-termes et comme calcul de stratégies gagnantes, PhD the-
sis, Université Paris VII, 1995.

5. Z. Luo. An Extended Calculus of Constructions. PhD thesis, University of Edin-
burgh, 1990.

6. R. Harper and R. Pollack. “Type checking with universes”. Theoretical Computer
Science, 89:107-136, 1991.

7. C. Sacerdoti Coen. Mathematical Knowledge Management and Interactive Theorem
Proving. PhD. thesis, University of Bologna, 2004.



18 Claudio Sacerdoti Coen

8. C. Sacerdoti Coen. “From Proof-Assistants to Distributed Libraries of Mathe-
matics: Tips and Pitfalls”. In Proc. Mathematical Knowledge Management 2003,
Lecture Notes in Computer Science, Vol. 2594, pp. 30–44, Springer-Verlag.

9. B. Werner. Une Theorie des Constructions Inductives. PhD. thesis, Université Paris
VII, 1994.

A Implementation of Strategies for the GKAMCIC

Here we show (in pseudo ML syntax) how to instantiate the GKAMCIC to obtain
both standard and non-conventional reduction strategies. The third strategy per-
forms in parallel both call-by-value and call-by-name. When environment items
are fetched during computation, the call-by-value component is returned; when
they are fetched in the read-back procedure, the call-by-name components is
returned to simulate “undoing” reduction of redexes not in head position. The
proof that the three more standard strategies really implement what is expected
can be found in the author’s PhD. thesis [7] for an extended version of the cal-
culus.

call-by-name:
SItem = term
EItem = term
to stack(ξ, t) = T (ξ, t)
to env t = t
from env t = (∅, t, ∅)
Ts(t) = t
Te(t) = t

call-by-value:
SItem = closure
EItem = term
to stack (ξ, t) = (ξ, t)
to env(ξ, t) = R(ξ, t, ∅)
from env t = (∅, t, ∅)
Ts(ξ, t) = T (ξ, t)
Te(t) = t

call-by-value, read-back by name:
SItem = closure
EItem = term * term
to stack (ξ, t) = (ξ, t)
to env(ξ, t) = (R(ξ, t, ∅), T (ξ, t))
from env (tv, tn) = (∅, tv, ∅)
Ts(ξ, t) = T (ξ, t)
Te(tv, tn) = tn

call-by-need:
SItem = closure
EItem = (bool ∗ configuration) ref
to stack (ξ, t) = (ξ, t)
to env(ξ, t) = ref(false, (ξ, t, ∅))
from env c =

match !t with
true, c′ → c′

|false, c′ → c := R(c′); snd !c
Ts(ξ, t) = T (ξ, t)
Te(c) = R(snd !c)

B Benchmarks

The benchmarks in Table 7 show the effect of convertibility and reduction strate-
gies on type-checking time. The benchmarks have been performed running the
kernel of the Matita interactive theorem prover on subsets of the library of the
Coq proof assistant. All the tests have been run on a Pentium IV 2.5 GHz with
1GB of RAM. Matita is written in OCaml.



Strategies for the Calculus of (co)Inductive Constructions 19

Table 7. Benchmarks

Conversion Reduction Standard Skipped Heavy Heaviest
strategy Strategy library theorems theorems theorem

SS call-by-name 1285.71s 375 170 29.6s
IS call-by-name 246.76s 1 15 6.9s
IS call-by-value, read-back by name 279.58s 1 23 13.0s
IS call-by-value 422.51s 1 36 9.7s
IS+ call-by-name 199.26s 1 2 2.2s
IS+ call-by-need 201.71s 1 3 1.5s
IS+ call-by-value, read-back by name 220.54s 1 9 10.1s
IS+ call-by-value 391.36s 0 19 11.8s
Coq 40.87s 0 2 2.5s

SS = Simplest strategy
IS = Improved Strategy (Sect. 4.1)
IS+ = Furtherly Improved Strategy (Sect. 4.2)

The “standard library” of Coq is the library developed by the authors of Coq
and distributed with the system. It is made of 5904 theorems and definitions.

Skipped theorems are theorems that require more than 30s to be type-
checked. The overall and mean type-checking times shown in the table do not
take in account the first 30s spent on skipped theorems.

Heavy theorems are non skipped theorems whose type-checking type requires
more than 1s. Since we consider 1s to be an acceptable type-checking time for
a single theorem, a satisfactory choice of strategies should produce no skipped
theorems and no heavy theorems.

The last line of the table shows the time required by Coq when run on
the same machine. Remember that Coq does not employ the basic conversion
algorithm, but the one that will be described in the second part of this work.
Moreover, constants can be marked in Coq automatically or by the user as
“opaque”, preventing their δ-expansion and seriously speeding up conversion in
some frequent situations. Our implementation does not exploit opaque constants
since opacity is an information that is not available in the library exported from
Coq.

Since the type-checker implementation of Coq is not the same of Matita, we
cannot say if the better performances are all due to the conversion algorithm and
to the opacity trick or if they are partly due to a most performant implementation
of type-checking. The benchmarks planned for the second part of this work will
be based on the type checker of Matita, allowing a direct comparison without
biases of the different conversion and reduction strategies and algorithms.



The Power of Closed Reduction Strategies?

Sixth Int’l Workshop on Reduction Strategies in Rewriting and Programming (WRS’06)
S. Antoy (ed.), Seattle, Washington, August 11, 2006
Portland State University, Tech. Report 06-04, pages 20-33

S. Alves1, M. Fernández2, M. Florido1, and I. Mackie2,3??

1 University of Porto, Department of Computer Science & LIACC,
R. do Campo Alegre 823, 4150-180, Porto, Portugal

2 King’s College London, Department of Computer Science,
Strand, London WC2R 2LS, U.K.

3 LIX, École Polytechnique, 91128 Palaiseau Cedex, France

Abstract. Closed reduction strategies in the λ-calculus restrict the re-
duction rules: the idea is that reductions can only take place when cer-
tain terms are closed (i.e. do not contain free variables). This has lead
to various applications, such as an α-conversion free calculus of explicit
substitutions, and an efficient abstract machine. The main contribution
of this paper is a new application of this strategy to a linear version of
Gödel’s System T. We show that a linear System T with closed reduction
offers a huge increase in expressive power over the usual linear systems,
which are ‘closed by construction’ rather than ‘closed at reduction’.

1 Introduction

Hidden in a correctness proof of Girard’s Geometry of Interaction [7] is a strategy
for cut-elimination in linear logic [6]. This strategy restricts cut-elimination steps
so that they can only take place when the exponential boxes are closed. Not
only is this strategy for cut-elimination simpler than the general one, it is also
exceptionally efficient in terms of the number of cut-elimination steps.

There are several translations of the λ-calculus into linear logic, which in-
spired the work on closed reduction in the λ-calculus [4, 5]. Closed reductions
avoid α-conversion by restricting β-reduction, so that only closed substitutions
are generated. In contrast with standard weak strategies, which also avoid α-
conversion, closed reduction strategies allow β-reductions to take place under
lambdas, which means that more sharing can be achieved. In addition to of-
fering efficient reduction strategies, applications such as an α-conversion free
calculus of explicit substitution were obtained (see [5] for more details).

These are just some of the pieces of evidence that show that closed reductions
have interesting properties. The purpose of this paper is to examine this family
of strategies further. We will show that closed reduction strategies can also be

?Research partially supported by the Treaty of Windsor Grant: “Linearity: Pro-
gramming Languages and Implementations”.

??Projet Logical, Pôle Commun de Recherche en Informatique du plateau de Saclay,
CNRS, École Polytechnique, INRIA, Université Paris-Sud.



The Power of Closed Reduction Strategies 21

applied with great benefit in other areas, more precisely, in this paper we will
analyse the computational power of linear λ-calculi using closed reductions.

In [2] we defined a linear version of Gödel’s System T with closed reductions,
which we called System L. We showed that this linear system has exactly the
same computational power as System T. This result is surprising because usual
definitions of linear systems are strictly less powerful than System T [11, 9].

In this paper, we claim that the use of closed reduction is the key to the
power of System L. To support this claim, we analyse the interplay between
linearity and closed reduction, and compare the computational power of linear
systems with and without closed reduction.

We will define two linear systems: LN and LN
0 . Both systems are extensions of

the linear λ-calculus [1] with numbers, booleans, pairs of natural numbers, and an
iterator. System LN has the same syntax as System L [2], and as System L it uses
the closed reduction strategy. However, its type system is more restrictive than
System L. We will show that System LN can encode all the primitive recursive
functions and more general functions such as Ackermann. On the other hand,
System LN

0 does not restrict to closed reduction strategies, but to be linear, it has
to restrict the set of terms. Actually, System LN

0 can be seen as a subsystem of Dal
Lago’s linear language H(∅) [11], albeit with a different syntax. We will show that
in System LN

0 we can encode only primitive recursive functions (Ackermann’s
function is not definable), therefore this system is strictly weaker than System
LN, and therefore weaker than System L.

In the next section we recall some background material. In Section 3 we
define the linear systems LN and LN

0 , and in Section 4 we demonstrate that we
can encode all the primitive recursive functions in these calculi. In Section 5 we
show that System LN goes considerably beyond this class of functions. Finally
we conclude the paper in Section 6.

2 Background: Closed Reduction, Linear Systems

Çağman and Hindley [3] observed that α-conversion can be avoided if β-redexes
are closed (i.e. (λx.t)u does not contain free variables). However, this is a strong
restriction, and the resulting calculus is very weak. In [4, 5] closed reduction
strategies were investigated which are less restrictive than this. The motivation
for this study was to understand efficiency issues in addition to finding calculi
that were free from α-conversion.

Two different versions of closed reduction were studied, based around the
following two options:

(λx.t)u → t[u/x] if fv(λx.t) = ∅

(λx.t)u → t[u/x] if fv(u) = ∅

which correspond to closed function (cf) and closed argument (ca) respectively.
In both cases, there are a number of variants that lead to calculi with different
properties. Substitution is taken to be explicit in these systems.



22 S. Alves, M. Fernández, M. Florido, and I. Mackie

The closed argument strategy was used in [2] to define an extension of the
linear λ-calculus [1] with natural numbers, booleans, linear pairs, linear condi-
tionals and a linear iterator (and with implicit rather than explicit substitution).
This linear version of Gödel’s System T was called System L.

In [12] it was shown that the linear λ-calculus is the internal language for
symmetric monoidal closed categories (the analogous result to the λ-calculus
being the internal language to Cartesian Closed Categories). The addition of
natural numbers and an iterator corresponds to adding a natural number object
in the category. Note that, in this linear setting, the iterator is only allowed
to iterate closed linear functions. More precisely, the typing rule for iterators
requires the function to be typed in an empty environment, that is, iterators are
“closed by construction”:

Γ ` n : N ∆ ` b : A ` f : A −◦ A

Γ,∆ ` iter n b f

In the same line, the linear System T of [11, 9], called H(∅), only allows
the construction of iterators on closed functions, and can only encode primitive
recursive functions. On the other hand, System L has the power of the full System
T. To understand what gives these two linear versions of System T so different
properties, in the following sections we will define two linear systems, one which
allows us to build iterators on functions with free variables, but requires that
reduction takes place only after the functions become closed, and another that
does not use closed reduction, but requires iterators to be closed by construction.

3 Linear Systems with and without Closed Reduction

In this section we will define two linear systems: System LN and System LN
0 . Both

systems extend the linear λ-calculus with booleans, numbers, pairs of natural
numbers, and an iterator. While System LN

0 has the usual open β-reduction
rule but, when building an iterator, requires the iterated function to be closed
(therefore avoiding copying of free variables), System LN uses a closed reduction
strategy [5, 8] and allows the use of open functions in iterators.

We start by defining the syntax and the set of types, which will be common
to the two systems.

3.1 Linear Terms and Types

The linear λ-terms are terms from the λ-calculus restricted in the following way
(fv(t) denotes the set of free variables of t).

x
λx.t if x ∈ fv(t)
tu if fv(t) ∩ fv(u) = ∅



The Power of Closed Reduction Strategies 23

Note that x is used at least once in the body of the abstraction, and the
condition on the application ensures that all variables are used at most once.
Thus these conditions ensure syntactic linearity (variables occur exactly once).

Next we add to this linear λ-calculus:
Pairs:

〈t, u〉 if fv(t) ∩ fv(u) = ∅

let 〈x, y〉 = t in u if x, y ∈ fv(u) and fv(t) ∩ fv(u)=∅

Note that when projecting from a pair, we use both projections. A simple
example of such a term is the function that swaps the components of a pair:

λx.let 〈y, z〉 = x in 〈z, y〉.

Booleans: true and false, and a conditional:

cond t u v if fv(t) ∩ fv(u) = ∅ and fv(u) = fv(v)

Note that this linear conditional uses the same resources in each branch.
Numbers: 0 and S, and an iterator:

iter t u v if fv(t)∩fv(u)= fv(u)∩fv(v)= fv(v)∩fv(t)=∅

Table 1 summarises the syntax of System LN and System LN
0 , showing in

parallel the term construction, variable constraints and free variables of terms.

Construction Variable Constraint Free Variables (fv)

0, true, false − ∅

S t − fv(t)

iter t u v fv(t) ∩ fv(u) = fv(u) ∩ fv(v) = fv(t) ∩ fv(v) = ∅ fv(t) ∪ fv(u) ∪ fv(v)

x − {x}

tu fv(t) ∩ fv(u) = ∅ fv(t) ∪ fv(u)

λx.t x ∈ fv(t) fv(t) r {x}

〈t, u〉 fv(t) ∩ fv(u) = ∅ fv(t) ∪ fv(u)

let 〈x, y〉 = t in u fv(t) ∩ fv(u) = ∅, x, y ∈ fv(u) fv(t) ∪ (fv(u) r {x, y})

cond t u v fv(u) = fv(v), fv(t) ∩ fv(u) = ∅ fv(t) ∪ fv(u)

Table 1.

Types The set of linear types is generated by the grammar:

A,B ::= N | B | A −◦ B | N ⊗ N

That is, we consider two base types (natural numbers and booleans), linear
arrows, and linear products on natural numbers.



24 S. Alves, M. Fernández, M. Florido, and I. Mackie

3.2 System L
N

We now define the reduction rules and the typing rules for System LN.

Definition 1 (Closed Reduction). Table 2 gives the reduction rules for Sys-

tem LN, substitution is a meta-operation defined as usual. Reductions can take

place in any context. We use −→ to denote the one-step reduction relation, and

−→∗ for its reflexive and transitive closure.

Name Reduction Condition

Beta (λx.t)v −→ t[v/x] fv(v) = ∅

Let let 〈x, y〉 = 〈t, u〉 in v −→ (v[t/x])[u/y] fv(t) = fv(u) = ∅

Cond cond true u v −→ u
Cond cond false u v −→ v
Iter iter (S t) u v −→ v(iter t u v) fv(tv) = ∅

Iter iter 0 u v −→ u fv(v) = ∅

Table 2. Closed reduction

Reduction is weak: for example, λx.(λy.y)x is a normal form. Note that
all the substitutions created during reduction (rules Beta, Let) are closed; this
corresponds to a closed argument reduction strategy (ca, see [5]). Also note that
Iter rules cannot be applied if the function v is open.

System LN’s syntax and reduction rules are the same as System L’s [2], as a
consequence we inherit from System L the following properties, for the untyped
calculus:

Lemma 1 (Correctness of Substitution). Let t and u be valid terms, x ∈
fv(t), and fv(u) = ∅, then t[u/x] is valid.

Lemma 2 (Correctness of −→). Let t be a valid term, and t −→ u, then:

1. fv(t) = fv(u);
2. u is a valid term.

Lemma 3 (Confluence). If t −→∗ t1 and t −→∗ t2, then there is a term t3
such that t1 −→∗ t3 and t2 −→∗ t3.

We associate types to terms in System LN using the typing rules given in
Figure 1.

Since we are in a linear system, we do not have Weakening and Contraction
rules. The only structural rule in Figure 1 is Exchange. For the same reason, the
logical rules split the context between the premises. The rules for numbers are
standard. In the case of a term of the form iter t u v, we check that t is a term
of type N and that v and u are compatible.

Also note that we allow the typing of iter t u v even if v is open (in contrast
with [11, 9]), but we do not allow reduction until v is closed. We will show later



The Power of Closed Reduction Strategies 25

Axiom and Structural Rule:

(Axiom)
x : A `LN x : A

Γ, x : A, y : B, ∆ `LN t : C
(Exchange)

Γ, y : B, x : A, ∆ `LN t : C

Logical Rules:

Γ, x : A `LN t : B
(−◦Intro)

Γ `LN λx.t : A −◦ B

Γ `LN t : A −◦ B ∆ `LN u : A
(−◦Elim)

Γ, ∆ `LN tu : B

Γ `LN t : N ∆ `LN u : N

(⊗Intro)
Γ, ∆ `LN 〈t, u〉 : N ⊗ N

Γ `LN t : N ⊗ N x : N, y : N, ∆ `LN u : C
(⊗Elim)

Γ, ∆ `LN let 〈x, y〉 = t in u : C

Numbers

(Zero)
`LN 0 : N

Γ `LN n : N

(Succ)
Γ `LN S n : N

Γ `LN t : N Θ `LN u : A ∆ `LN v : A → A
(Iter)

Γ, Θ, ∆ `LN iter t u v : A

Booleans
(True)

`LN true : B

(False)
`LN false : B

∆ `LN t : B Γ `LN u : A Γ `LN v : A
(Cond)

Γ, ∆ `LN cond t u v : A

Fig. 1. Type System for System LN

that this feature gives our system more power (whereas systems that do not
allow building iter with v open are strictly weaker [11]).

Subject Reduction for System LN can be proved as for System L [2].

Theorem 1 (Subject Reduction). If Γ `LN M : A and M −→ N , then

Γ `LN N : A.

Note that confluence of the untyped calculus, together with subject reduction,
implies confluence of the typed calculus.

Since terms typable in System LN are also typable in System L, we inherit
the strong normalisation property:

Theorem 2 (Strong Normalisation). If Γ `LN t : T , t is strongly normalis-

able.

3.3 System L
N

0

The set of terms for System LN
0 is built in the same way as for System LN,

except that when building an iterator, we don’t allow the iterated function to be



26 S. Alves, M. Fernández, M. Florido, and I. Mackie

an open term. Thus iterators in this system have the following definition (note
the additional constraint fv(v) = ∅):

iter t u v if fv(t)∩fv(u)=∅ and fv(v)=∅

We now define the reduction rules and the typing rules for System LN
0 .

Definition 2 (Reduction). Table 3 gives the reduction rules for System LN
0 ,

substitution is a meta-operation defined as usual. Reductions can take place in

any context.

Name Reduction

Beta (λx.t)v −→ t[v/x]
Let let 〈x, y〉 = 〈t, u〉 in v −→ (v[t/x])[u/y]
Cond cond true u v −→ u
Cond cond false u v −→ v
Iter iter (S t) u v −→ v(iter t u v)
Iter iter 0 u v −→ u

Table 3. Reduction for System LN

0

Correctness of Substitution is proved as for System L [2], but α-conversion
must be used in substitution whenever necessary. Note that α-conversion was not
needed in System L and therefore in System LN, because all the substitutions
take a closed term.

Lemma 4 (Correctness of Substitution). Let t and u be valid terms, such

that fv(t) ∩ fv(u) = ∅ and x ∈ fv(t), then t[u/x] is valid.

Lemma 5 (Correctness of −→). Let t be a valid term, and t −→ u, then:

1. fv(t) = fv(u);
2. u is a valid term.

Proof. (Sketch) The only reduction rules that copy or erase terms, are the rules
for iterators, which either copy or erase the iterated function. However, because
of the condition that the iterated function must be closed when constructing the
term iter t u v, then reducing an iterator will either copy or erase a closed term.
Therefore the set of free variables is preserved and the term obtained is valid.

Note that in System LN we do not have the constraint on the iterator term, but
we have a condition in the reduction rules for iterators, which also guarantees
that reducing an iterator will either copy or erase a closed term.

In Figure 2 we show how types are assigned to terms in System LN
0 . The only

difference between the rules for this system and for System LN is in the (Iter)
rule, where the context for the iterated function is always empty.

As before, Subject Reduction for System LN
0 can be proved as for System

L [2].



The Power of Closed Reduction Strategies 27

Axiom and Structural Rule:

(Axiom)
x : A `

LN
0

x : A

Γ, x : A, y : B, ∆ `
LN

0

t : C
(Exchange)

Γ, y : B, x : A, ∆ `
LN

0

t : C

Logical Rules:

Γ, x : A `
LN

0

t : B
(−◦Intro)

Γ `
LN

0

λx.t : A −◦ B

Γ `
LN

0

t : A −◦ B ∆ `
LN

0

u : A
(−◦Elim)

Γ, ∆ `
LN

0

tu : B

Γ `
LN

0

t : N ∆ `
LN

0

u : N

(⊗Intro)
Γ, ∆ `

LN
0

〈t, u〉 : N ⊗ N

Γ `
LN

0

t : N ⊗ N x : N, y : N, ∆ `
LN

0

u : C
(⊗Elim)

Γ, ∆ `
LN

0

let 〈x, y〉 = t in u : C

Numbers

(Zero)
`
LN

0

0 : N

Γ `
LN

0

n : N

(Succ)
Γ `

LN
0

S n : N

Γ `
LN

0

t : N Θ `
LN

0

u : A `
LN

0

v : A → A
(Iter)

Γ, Θ `
LN

0

iter t u v : A

Booleans
(True)

`
LN

0

true : B

(False)
`
LN

0

false : B

∆ `
LN

0

t : B Γ `
LN

0

u : A Γ `
LN

0

v : A
(Cond)

Γ, ∆ `
LN

0

cond t u v : A

Fig. 2. Type System for System LN

0

Theorem 3 (Subject Reduction). If Γ `LN

0

M : A and M −→ N , then

Γ `LN

0

N : A.

Note that any term typable in System LN
0 is also typable in System LN,

therefore in System L. Thus, System LN
0 is strongly normalising.

Theorem 4 (Strong Normalisation). If Γ `LN

0

t : T , t is strongly normalis-

able.

Confluence for typable terms in System LN
0 is a direct consequence of strong

normalisation and the fact that the rules are non-overlapping (using Newmann’s
Lemma [13]). Moreover, we can apply directly Klop’s result [10] to the un-
typed calculus because the system is orthogonal (that is, left-linear and non-
overlapping):

Lemma 6 (Confluence). If t −→∗ t1 and t −→∗ t2, then there is a term t3
such that t1 −→∗ t3 and t2 −→∗ t3.



28 S. Alves, M. Fernández, M. Florido, and I. Mackie

4 Primitive Recursive Functions

Based on the results obtained for System L [2], in this section we show how we
can define the primitive recursive functions in both System LN and System LN

0 .
We choose to present an encoding that satisfies the term conditions of System
LN

0 , since these are more restrictive than those of System LN. In the next section
we show that in System LN we can encode substantially more than primitive
recursive functions.

We recall that a function f : N
n → N is primitive recursive if it can be defined

using: the natural numbers; the projections: πi(x1, . . . , xn) = xi (1 ≤ i ≤ n);
composition; and the primitive recursive scheme, which allows us to define a
recursive function h using two auxiliary (primitive recursive) functions f , g:

h(x, 0) = f(x)
h(x, n + 1) = g(x, h(x, n), n)

4.1 Erasing linearly

Although System LN and System LN
0 are linear calculi, we can erase numbers.

In particular, we can define the projection functions on N
2 fst, snd : N ⊗ N −◦ N

as follows:

fst = λx.let 〈u, v〉 = x in iter v u (λz.z)
snd = λx.let 〈u, v〉 = x in iter u v (λz.z)

Lemma 7. For any numbers ā and b̄, fst〈ā, b̄〉 −→∗ ā and snd〈ā, b̄〉 −→∗ b̄.

Proof. We show the case for fst. Let ā = Sn 0, b̄ = Sm 0.

fst〈ā, b̄〉 −→ (let 〈u, v〉 = 〈Sn 0,Sm 0〉 in iter v u λz.z)
−→ iter (Sm 0) (Sn 0) λz.z −→∗ Sn 0 = ā.

Note that fst and snd are valid typable terms in System LN
0 (see Figure 3), and

they are closed terms.

x : N ⊗ N `
LN

0

x : N ⊗ N

v : N `
LN

0

v : N u : N `
LN

0

u : N

z : N `
LN

0

z : N

`
LN

0

λz.z : N −◦ N

u : N, v : N `
LN

0

iter v u λz.z : N

x : N ⊗ N `
LN

0

let 〈u, v〉 = x in iter v u λz.z : N

`
LN

0

λx.let 〈u, v〉 = x in iter v u λz.z : (N ⊗ N) −◦ N

Fig. 3. Typing of fst



The Power of Closed Reduction Strategies 29

4.2 Copying linearly

We can also copy natural numbers in these linear calculi. For this, we define a
function C : N −◦ N ⊗ N that given a number n̄ returns a pair 〈n̄, n̄〉:

C = λx.iter x 〈0, 0〉 (λx.let 〈a, b〉 = x in 〈Sa,Sb〉)

Lemma 8. For any number n̄, C n̄ −→∗ 〈n̄, n̄〉.

Proof. By induction on n̄.

C 0 −→ iter 0 〈0, 0〉 (λx.let 〈a, b〉 = x in 〈Sa,Sb〉) −→ 〈0, 0〉
C (St+1 0) = iter (St+1 0) 〈0, 0〉 (λx.let 〈a, b〉 = x in 〈Sa,Sb〉)

−→∗ (λx.let 〈a, b〉 = x in 〈Sa,Sb〉)〈t, t〉
−→ let 〈a, b〉 = 〈t, t〉 in 〈Sa,Sb〉 −→ 〈St,St〉

Again, C is valid in System LN
0 (see Figure 4), and a closed term.

Consider F = (λx.let 〈a, b〉 = x in 〈Sa, Sb〉)

x : N ⊗ N `
LN

0

x : N ⊗ N

a : N `
LN

0

a : N

a : N `
LN

0

Sa : N

b : N `
LN

0

b : N

b : N `
LN

0

Sb : N

a : N, b : N `
LN

0

〈Sa, Sb〉 : N ⊗ N

x : N ⊗ N `
LN

0

let 〈a, b〉 = x in 〈Sa, Sb〉 : N ⊗ N

`
LN

0

(λx.let 〈a, b〉 = x in 〈Sa, Sb〉) : (N ⊗ N) −◦ (N ⊗ N)

x : N `
LN

0

x : N

`
LN

0

0 : N `
LN

0

0 : N

`
LN

0

〈0, 0〉 : N ⊗ N `
LN

0

F : (N ⊗ N) −◦ (N ⊗ N)

x : N `
LN

0

iter x 〈0, 0〉 (λx.let 〈a, b〉 = x in 〈Sa, Sb〉) : N ⊗ N

`
LN

0

λx.iter x 〈0, 0〉 (λx.let 〈a, b〉 = x in 〈Sa, Sb〉) : N −◦ (N ⊗ N)

Fig. 4. Typing of C

4.3 Primitive Recursive Scheme

We have already shown we can project, and of course we have composition.
We now show how to encode, using iterators, a function h defined by primitive
recursion from f and g.

First, assume h is defined by the following, simpler scheme (it uses n only
once in the second equation):

h(x, 0) = f(x)
h(x, n + 1) = g(x, h(x, n))



30 S. Alves, M. Fernández, M. Florido, and I. Mackie

Given the closed functions G : N −◦ N −◦ N and F : N → N, representing g and
f , let g′ be the term:

λy.λz.let 〈z1, z2〉 = C z in Gz1(yz2) : (N −◦ N) −◦ (N −◦ N)

then h(x, n) is defined by the term (iter n F g′) x : N, (see Figure 5). Note that
the encoding of h is a closed term. This term is valid because F is closed (by
assumption), and g′ is closed since G is a closed term (by assumption).

Indeed, we can show by induction that (iter n F g′) x, where x and n are
numbers, reduces to the number h(x, n); we use Lemma 8 to copy numbers:

(iter 0 F g′) x −→ (F x) = h(x, 0)
(iter (Sn+1 0) F g′) x −→∗

let 〈z1, z2〉 = 〈x, x〉 in Gz1((iter (Sn 0) F g′)z2)
−→ G x((iter (Sn 0) F g′)x) = h(x, n + 1) by induction.

·
·
·

`
LN

0

G : N −◦ N −◦ N z1 : N `
LN

0

z1 : N

z1 : N `
LN

0

Gz1 : N −◦ N

y : N −◦ N `
LN

0

y : N −◦ N z2 : N `
LN

0

z2 : N

y : N −◦ N, z2 : N `
LN

0

yz2 : N

y : N −◦ N, z1 : N, z2 : N `
LN

0

Gz1(yz2) : N

z : N `
LN

0

C z : N ⊗ N y : N −◦ N, z1 : N, z2 : N `
LN

0

Gz1(yz2) : N

y : N −◦ N, z : N `
LN

0

let 〈z1, z2〉 = C z in Gz1(yz2) : N

y : N −◦ N `
LN

0

λz.let 〈z1, z2〉 = C z in Gz1(yz2) : N −◦ N

`
LN

0

λyz.let 〈z1, z2〉 = C z in Gz1(yz2) : (N −◦ N) −◦ (N −◦ N)

x : N `
LN

0

x : N

·
·
·

`
LN

0

F : N −◦ N `
LN

0

g′ : (N −◦ N) −◦ (N −◦ N)

n : N `
LN

0

iter n F g′ : N −◦ N x : N `
LN

0

x : N

n : N, x : N `
LN

0

(iter n F g′)x : N

Fig. 5. Typing of functions defined by primitive recursion

Now to encode the standard primitive recursive scheme, which has an extra
n in the last equation, all we need to do is copy n:

h(x, n) = let 〈n1, n2〉 = C n in sx where
s = iter n2 F (λy.λz.let 〈z1, z2〉 = C z in Gz1(yz2)n1)



The Power of Closed Reduction Strategies 31

5 Beyond Primitive Recursion

In this section we show that it is possible to encode more than primitive recursive
functions in System LN, by giving the encoding of a non primitive recursive
function: Ackermann’s function.

ack(0, n) = S n
ack(S n, 0) = ack(n,S 0)
ack(S n,S m) = ack(n, ack(S n,m))

In a higher-order functional language, it can be defined as follows:
Let succ = λx.S x : N −◦ N, then ack(m,n) = a m n where:

a 0 = succ A g 0 = g(S 0)
a (S n) = A (a n) A g (S n) = g(A g n)

Lemma 9. Both definitions are equivalent: a x y = ack(x, y), for all numbers

x, y.

Proof. By induction on x, proving first by induction on n that if g = λy.ack(x, y)
then A g n = ack(S x, n). The case x = 0 is trivial. By definition, a (S n) =
A (a n), and by induction this is A(λy.ack(n, y)). Therefore by Lemma 10 below,
a(S n)z = ack(S n, z).

Lemma 10. If g = λy.ack(x, y) then A g n = ack(S x, n).

Proof. By induction on n.

We can define a and A in System LN as follows:

a = λn.iter n succ A : N −◦ N −◦ N

A g n = λg n.iter (S n) (S 0) g : (N −◦ N) −◦ N −◦ N

We show by induction that this encoding is correct:

– a 0 = iter 0 succ A −→ succ

A g 0 = iter (S 0) (S 0) g −→ g(S 0)
– a (S n) = iter (Sn 0) succ A −→ A(iter n succ A) = A(a n)

A g (S n) = iter (S(S n)) (S 0) g −→ g(iter (S n) (S 0) g) = g(A g n).

Then Ackermann’s function can be defined in System LN (see Figure 6) as:

ack = λm n.(iter m succ (λgu.iter (S u) (S 0) g)) n : N −◦ N −◦ N

The correctness of this encoding follows directly from the lemma above.
Note that iter (S u) (S 0) g cannot be typed in System LN

0 , because g is a
free variable. System LN allows building the term with the free variable g, but
does not allow reduction until it is closed.

Every function in System LN
0 can be defined in the system H(∅) studied

in [11]: the syntax is different but the typing rules are equivalent. It has been
proved (see [11] for details) that Ackermann’s function cannot be represented in
H(∅), therefore it cannot be represented in System LN

0 either. Thus, System LN
0

is strictly less powerful than System LN.



32 S. Alves, M. Fernández, M. Florido, and I. Mackie

x : N `
LN

0

x : N

x : N `
LN

0

S x : N

`
LN

0

succ = λx.S x : N −◦ N

u : N `
LN

0

u : N

u : N `
LN

0

S u : N

`
LN

0

0 : N

`
LN

0

S 0 : N g : N −◦ N `
LN

0

g : N −◦ N

g : N −◦ N, u : N `
LN

0

iter (S u) (S 0) g : N

g : N −◦ N `
LN

0

λu.iter (S u) (S 0) g : (N −◦ N)

`
LN

0

A = λgu.iter (S u) (S 0) g : (N −◦ N) −◦ (N −◦ N)

m : N `
LN

0

m : N `
LN

0

succ : N −◦ N `
LN

0

A : (N −◦ N) −◦ (N −◦ N)

m : N `
LN

0

iter m succ A : N −◦ N n : N `
LN

0

n : N

m : N, n : N `
LN

0

(iter m succ A) n : N

`
LN

0

λm n.(iter m succ A) n : N −◦ N −◦ N

Fig. 6. Typing of Ackermann’s function

6 Conclusions and Future Work

Closed reduction strategies impose strong constraints on the application of re-
duction rules, but despite this fact, they can simulate both call-by-name and
call-by-value evaluations in the λ-calculus, and also more efficient evaluations
(since reductions can take place under abstractions and thus achieve more shar-
ing of computations); similar results hold for PCF (see [5]).

In this paper we have shown that in the case of a linear λ-calculus with
iterators, the use of closed reduction strategies has another benefit: not only we
can gain in efficiency, but also we gain in computational power, thanks to the
fact that we can relax the constraints on the construction of iterator terms.

The linear system with iterators is not computationally complete (it is strongly
normalising). A question that remains to study is whether it is possible to define
a linear and computationally complete version of PCF using closed reductions.

References

1. S. Abramsky. Computational Interpretations of Linear Logic. Theoretical Com-
puter Science, 111:3–57, 1993.

2. S. Alves, M. Fernández, M. Florido, and I. Mackie. The power of linear functions,
2006. Available from www.dcs.kcl.ac.uk/staff/ian/papers/powlf.pdf.

3. N. Çağman and J. R. Hindley. Combinatory weak reduction in lambda calculus.
Theoretical Computer Science, 198(1–2):239–249, 1998.



The Power of Closed Reduction Strategies 33

4. M. Fernández and I. Mackie. Closed reduction in the λ-calculus. In J. Flum and
M. Rodŕıguez-Artalejo, editors, Proceedings of Computer Science Logic (CSL’99),
volume 1683 of Lecture Notes in Computer Science, pages 220–234. Springer-
Verlag, September 1999.

5. M. Fernández, I. Mackie, and F.-R. Sinot. Closed reduction: explicit substitu-
tions without alpha conversion. Mathematical Structures in Computer Science,
15(2):343–381, 2005.

6. J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50(1):1–102, 1987.
7. J.-Y. Girard. Geometry of interaction 1: Interpretation of System F. In R. Ferro,

C. Bonotto, S. Valentini, and A. Zanardo, editors, Logic Colloquium 88, volume
127 of Studies in Logic and the Foundations of Mathematics, pages 221–260. North
Holland Publishing Company, Amsterdam, 1989.

8. J.-Y. Girard. Towards a geometry of interaction. In J. W. Gray and A. Scedrov,
editors, Categories in Computer Science and Logic: Proc. of the Joint Summer
Research Conference, pages 69–108. American Mathematical Society, Providence,
RI, 1989.

9. M. Hofmann. Linear types and non-size-increasing polynomial time computation.
In Proc. Logic in Computer Science (LICS’99). IEEE Computer Society, 1999.

10. J.-W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction
systems, introduction and survey. Theoretical Computer Science, 121:279–308,
1993.

11. U. D. Lago. The geometry of linear higher-order recursion. In P. Panangaden,
editor, Proceedings of the Twentieth Annual IEEE Symp. on Logic in Computer
Science, LICS 2005, pages 366–375. IEEE Computer Society Press, June 2005.

12. I. Mackie, L. Román, and S. Abramsky. An internal language for autonomous
categories. Journal of Applied Categorical Structures, 1(3):311–343, 1993.

13. M. Newman. On theories with a combinatorial definition of “equivalence”. Annals
of Mathematics, 43(2):223–243, 1942.



Transformation for Refining Unraveled

Conditional Term Rewriting Systems

Sixth Int’l Workshop on Reduction Strategies in Rewriting and Programming (WRS’06)
S. Antoy (ed.), Seattle, Washington, August 11, 2006
Portland State University, Tech. Report 06-04, pages 34-48

Naoki Nishida, Tomohiro Mizutani, and Masahiko Sakai

Graduate School of Information Science, Nagoya University
Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

{nishida@, mizutani@sakabe.i., sakai@}is.nagoya-u.ac.jp

Abstract. Unravelings, which transform conditional term rewriting sys-
tems (CTRSs) into unconditional term rewriting systems, are useful
for analyzing properties of CTRSs. To compute reduction sequences of
CTRSs, the restriction by a particular context-sensitive and membership
condition is imposed on reductions of the unraveled CTRSs. The con-
dition is determined by extra function symbols introduced due to the
unravelings. In this paper, we propose a method to weaken the restric-
tion, that is, to reduce the number of extra symbols. We first improve the
unraveling for deterministic CTRSs, and then propose a transformation
that folds two successively used rewrite rules in the unraveled CTRSs,
which satisfy a condition, to a rewrite rule that simulates reductions by
the two rules.

1 Introduction

Unravelings are transformations from conditional term rewriting systems (for
short, CTRSs) into unconditional term rewriting systems (TRSs). They are use-
ful for analyzing properties of CTRSs. For example, ‘effective termination’, in
which CTRSs are terminating and the recursive reduction of the instantiated
conditional parts also terminates, is an important property of CTRSs and it
can be guaranteed by termination of the unraveled CTRSs [6, 11]. An unravel-
ing for normal CTRSs was investigated by Bergstra and Klop [3]. This concept
was revisited by Marchiori who discussed its properties such as syntactic ones,
termination, modularity, and so on [6]. He also proposed the unraveling for join
CTRSs. Ohlebusch proposed an unraveling for deterministic 3-CTRSs to prove
termination of logic programs [10]. A variant of Ohlebusch’s unraveling is used
in several papers [4, 7–9].

It is well-known that reductions of CTRSs are much more complicated than
those of TRSs. One of the reasons is that the recursive reduction is necessary
to evaluate instantiated conditional parts. To compute reduction sequences of
CTRSs, unravelings appear attractive. An unraveling is said to be simulation-
complete for a CTRS over a signature if both reachability and unreachability
of terms over the signature are preserved by the unraveling [7–9]. In general,



Transformation for Refining Unraveled Conditional Term Rewriting Systems 35

ρ : l → r ⇐ s1 → t1 ∧ · · · ∧ sk → tk

⇓ U

{ l → u
ρ
1(s1,−→x1), u

ρ
1(t1,

−→x1) → u
ρ
2(s2,−→x2), · · · , u

ρ

k(tk,−→xk) → r }

Fig. 1. Outline of the unraveling for deterministic CTRSs.

unravelings are not simulation-complete for arbitrary target CTRSs because the
unraveled CTRSs are simple approximations of the original CTRSs [6, 11]. How-
ever, it was shown that the restriction by a particular context-sensitive and mem-
bership condition to reductions of the unraveled CTRSs preserves unreachability
of the original CTRSs, that is, simulation-completeness of the unravelings [8].

Unravelings are generally done by decomposing each conditional rule to some
unconditional rules that are supposed to be used in a fixed order (see Fig. 1).
A reduction from lσ to rσ by the conditional rule ρ is simulated by a reduction
sequence by the corresponding unconditional rules; the sequence starts from
lσ; in the sequence, each extra function symbol u

ρ
i (called a U symbol) not in

the original signature checks sequentially reachability from siσ to tiσ (evaluates
the condition si → ti with σ); the sequence ends at rσ after all conditions are
evaluated successfully. We are sure that the unravelings preserve reachability on
terms over the original signatures. On the other hand, the unravelings do not
preserve unreachability for all CTRSs because unexpected reduction sequences
are sometimes caused by disobeying the application order of rules whose left-
hand sides are rooted with the U symbols [6, 11]. To avoid this, a restriction
to reductions of the unraveled CTRSs is required, which prohibits reductions
associated with the following redexes:

– (context-sensitive condition) redexes that occur strictly below U symbols,
except for the first arguments of the U symbols , or

– (membership condition) redexes that contains a U symbol in their proper
subterms.

In this way, the restriction by the above context-sensitive and membership con-
dition is imposed on reductions of the unraveled CTRSs to maintain simulation-
completeness [8]. As another approach to simulation-completeness, it was shown
that the unraveled CTRSs are simulation-complete for the original CTRSs if the
unraveled ones are either left-linear or both right-linear and non-erasing [7].

In this paper, we try to construct unconditional TRSs that are simulation-
complete for the original CTRSs without the context-sensitive and membership
condition. We first improve the unraveling for deterministic CTRSs so that the
number of unraveled rules is less than those with the ordinary unraveling. We
then propose a transformation, which is applied to the unraveled CTRSs, to
remove the U symbols as many as possible from the unraveled CTRSs. The
transformation folds two rules used successively in reduction sequences into one
rule (see Fig. 2). We show a delicate condition that U symbols to be removed
should satisfy, and we tighten it to maintain an advantage of CTRSs associated
with the ‘let’ structure of functional programs. Removing U symbols leads to the



36 Naoki Nishida, Tomohiro Mizutani, Masahiko Sakai

„

S ∪ { l1 → u
ρ
i (ti,1δ, . . . , ti,miδ,

−→xi),
u

ρ
i (ti,1, . . . , ti,mi ,

−→xi) → r2 }
, µ

«

=⇒T (S ∪ { l1 → r2δ }, µ′)

where µ is updated to µ′ w.r.t. root(r2)

Fig. 2. Outline for removing U symbols by the transformation T.

relaxation of the restriction by the context-sensitive and membership condition
because the condition depends on the existence of U symbols. We also show cor-
rectness of the transformation, and show that the composition of the unraveling
and the transformation is also an unraveling. In the case that all U symbols are
removed, we require no longer any context-sensitive and membership condition
for simulation-completeness. We also show that the transformation preserves
confluence of CTRSs.

Unfortunately, the transformation often fails to remove all U symbols. How-
ever, we have some advantages even if not all U symbols are removed.

– The context-sensitive condition is sometimes removed.
– Non-termination of CTRSs is preserved by the transformation. Thus, by

showing termination of the unraveled CTRSs, we can prove ‘effective termi-
nation’ of the original CTRSs.

There are some cases in which the improvement in this paper increases the effect
of the transformation (see Section 4). If we succeed in removing all U symbols,
there are furthermore advantages as follows.

– The context-sensitive and membership condition is not necessary.
– Confluence of CTRSs is preserved. Accordingly, to prove confluence of the

CTRSs, we can use many techniques for proving confluence of TRSs.

Therefore, the transformation is always harmless and we can sometimes obtain
some advantages.

The unraveling for deterministic CTRSs is used in the inversion compil-
ers proposed in [8, 9]. The compilers transform a given constructor TRS into a
CTRS that computes (partial) inverse images of functions defined in the TRS.
The compilers then unravel the CTRS to a TRS whose rules may have extra
variables. Since inverse images are not mappings in general, CTRSs obtained by
the compilers are not always confluent. From this reason, this paper does not
assume confluence for CTRSs. The transformation in this paper is sometimes
useful for simplifying TRSs obtained by the compilers. We will show an example
at the end of this paper.

This paper is organized as follows. In Section 2, we give notations of term
rewriting. In Section 3, we improve the unraveling for deterministic CTRSs. In
Section 4, we propose a transformation that removes extra function symbols
introduced due to the improved unraveling. In Section 5, we discuss confluence
of CTRSs and the unraveled CTRSs. In Section 6, we enhance the condition
for removing the extra function symbols in the transformation. In Section 7, we
offer some concluding remarks.



Transformation for Refining Unraveled Conditional Term Rewriting Systems 37

2 Preliminaries

This paper follows the basic notions of term rewriting [2, 11]. In this section we
outline the basic notations.

Through this paper, we use V as a countably infinite set of variables. The
set of all terms over a signature F and V is denoted by T (F ,V). The set of all
variables appearing in either of terms t1, . . . , tn is represented by Var(t1, . . . , tn).
The identity of terms s and t is denoted by s ≡ t. The notation t|p represents
the subterm of t at a position p. The function symbol at the root position ε of
t is denoted by root(t). The notation C[t1, . . . , tn]p1,...,pn

represents the term
obtained by replacing ¤ at position pi of an n-hole context C with term ti for 1
≤ i ≤ n. The domain and range of a substitution σ are denoted by Dom(σ) and
Ran(σ), respectively. The composition σθ of substitutions σ and θ is defined as
σθ(x) = θ(σ(x)).

An (oriented) conditional rewrite rule over a signature F is a triple (l, r, Cnd),
denoted by l → r ⇐ Cnd, such that the left-hand side (lhs) l is a non-variable
term in T (F ,V), the right-hand side (rhs) r is a term in T (F ,V), and the
conditional part Cnd is in form of s1 → t1 ∧ · · · ∧ sn → tn (n ≥ 0) of terms
si and ti in T (F ,V). In particular, the conditional rewrite rule l → r ⇐ Cnd

is said to be an (unconditional) rewrite rule if n = 0, and we may abbreviate
it to l → r. We say that a binary relation ≈ and a substitution σ satisfy the
conditional part Cnd, written by Cnd(σ,≈), if siσ ≈ tiσ for 1 ≤ i ≤ n. We denote
l → r ⇐ Cnd with a unique label ρ by ρ : l → r ⇐ Cnd. To simplify notations,
we may write labels instead of the corresponding rules. For a conditional rewrite
rule ρ : l → r ⇐ Cnd, variables occurring not in l but in either r or Cnd are called
extra variables of ρ. The set of all extra variables of ρ is denoted by EVar(ρ).

Let R be a finite set of conditional rewrite rules over a signature F . The
n-level rewrite relation −→n R of R is defined inductively as follows: −→

0 R = ∅ and

−−−→
n+1 R = {(C[lσ]p, C[rσ]p) | ρ : l → r ⇐ Cnd ∈ R, Cnd(σ,

∗
−→n R)}. The rewrite

relation −→R of R is defined as −→R =
⋃

n≥0 −→n R. To specify the position p and the

rule ρ, we write s −→p
R t or s −→

[p,ρ]
R t. An (oriented) conditional rewriting system

(CTRS ) over a signature F is an abstract reduction system (T (F ,V), −→R) of
T (F ,V) and the rewrite relation of a finite set R of conditional rewrite rules over
F . We use the set R of rules to denote the CTRS (T (F ,V), −→R). A CTRS is
called a term rewriting system with extra variables (EV-TRS ) if it contains only
unconditional rewrite rules. Specifically, it is a term rewriting system (TRS ) if
Var(l) ⊇ Var(r) for every its rule l → r.

A CTRS R is called a 1-CTRS if every rule in R has no extra variable, a
2-CTRS if every rule in R has no extra variable in its right-hand side, a 3-CTRS
if for every rule in R all extra variables of the rule appear in the conditional part,
and a 4-CTRS if no restriction is imposed. A conditional rewrite rule ρ : l → r ⇐
s1 → t1 · · · sk → tk is called deterministic if Var(si) ⊆ Var(l, t1, . . . , ti−1) for 1 ≤
i ≤ k. A CTRS is called normal if every its rule l → r ⇐ s1 → t1 ∧ · · · ∧ sk → tk
satisfies that t1, . . . , tk are ground normal forms of Ru = { l → r | l → r ⇐
Cnd ∈ R }.



38 Naoki Nishida, Tomohiro Mizutani, Masahiko Sakai

We use the notion of context-sensitive reduction in [5]. Let F be a signature.
A context-sensitive condition (replacement mapping) µ is a mapping from F
to a set of integer lists such that µ(f) ⊆ {1, . . . , n} for n-ary symbols f in F .
When µ(f) is not defined explicitly, we assume that µ(f) = {1, . . . , n}. The set
Oµ(t) of replacing (active) positions of a term t is defined inductively as follows:
Oµ(x) = ∅ if x ∈ V, and Oµ(f(t1, . . . , tn)) = {ip | f ∈ F , i ∈ µ(f), p ∈ Oµ(ti)}.
The context-sensitive reduction of an EV-TRS R with µ is defined as −→(R,µ) =

{(s, t) | s −→p
R t, p ∈ Oµ(s)}. An abstract reduction system (T (F ,V), −→(R,µ)),

denoted by (R,µ), is called a context-sensitive reduction system (CS-TRS ).
In this paper we use a simple variant of membership-conditional systems [13].

For an EV-TRS R, the membership-conditional reduction of −→R by a member-
ship condition ∈ T (where T ⊆ T (F ,V)) is defined as −−→

∈T R = {(C[lσ]p, C[rσ]p) |

l → r ∈ R, (∀x ∈ Var(l, r), xσ ∈ T )}. The membership-conditional reduction for
−→(R,µ) is defined similarly as −−→

∈T (R,µ).

3 Improvement of Unraveling for Deterministic CTRSs

In this section, we improve the unraveling (denoted by UO in this paper) for de-
terministic CTRSs, which is proposed in [4, 7–9]. The unraveling UO is a variant
of Ohlebusch’s unraveling [10]. The idea for this improvement is based on the
unraveling for normal CTRSs [6], which is denoted by UN .

We first explain the intuitive idea of our improvement method. The unrav-
eling UO decomposes each conditional rewrite rule ρ having k conditions into
k + 1 unconditional rewrite rules that are used to evaluate the conditions in
left-to-right order, introducing ‘fresh’ extra function symbols, called U symbols
(see Fig. 1). For example, the conditional rewrite rule

ρ1 : f(x, y) → z ⇐ g(x) → w ∧ g(y) → z ∧ h(w, x) → z

is unraveled into the following four unconditional rewrite rules, by introducing
U symbols u1, u2 and u3:

UO(ρ1) =

{

f(x, y) → u1(g(x), x, y), u1(w, x, y) → u2(g(y), w, x),
u2(z, w, x) → u3(h(w, x), z), u3(z, z) → z

}

.

The application order of these rules in a reduction sequence corresponds exactly
to the order of evaluating the conditions. However, the order between u1 and u2

is not necessary because the first and second conditions g(x) → w and g(y) → z

can be evaluated in parallel. The reason is that all variables x, y used in the
evaluation already appear in the lhs f(x, y) of the conditional rule. From this
fact, we can combine u1 and u2 into one symbol u

′
1 as follows:

f(x, y) → u
′
1(g(x), g(y), x) and u

′
1(w, z, x) → u3(h(w, x), z).

Thus, to allow simultaneous evaluation of conditions that can be evaluated in
parallel, we improve the ordinary unraveling UO so that some conditional rules



Transformation for Refining Unraveled Conditional Term Rewriting Systems 39

are decomposed to less unconditional rules. This idea comes from the unraveling
UN for normal CTRSs [6].

This improvement is formalized as follows. Here, we denote by
−→
T the sequence

of the elements (in some fixed order) in the finite set T of terms, and denote
⋃

t∈T Var(t) by Var(T ).

Definition 1. Let R be a deterministic CTRS over a signature F . We consider
a conditional rewrite rule ρ : l → r ⇐

∧m1

j=1 s1,j → t1,j ∧ · · · ∧
∧mk

j=1 sk,j → tk,j ∈

R 1 such that Var(si,j) ⊆ Var(l) ∪ Var(T1)∪· · ·∪Ti−1) for all i and j, where Ti

= {ti,1, . . . , ti,mi
}. For every conditional rewrite rule ρ in the above form, let |ρ|

denote the number of groups of conditions in ρ (that is, |ρ| = k), and we need k

‘fresh’ function symbols u
ρ
1, . . . , u

ρ
k, called U symbols, in the transformation. We

transform ρ into a set U(ρ) of k + 1 unconditional rewrite rules as follows:

U(ρ) =



















l → u
ρ
1(s1,1, . . . , s1,m1

,
−→
X1),

u
ρ
1(t1,1. . . . , t1,m1

,
−→
X1) → u

ρ
2(s2,1, . . . , s2,m2

,
−→
X2),

...

u
ρ
k(tk,1, . . . , tk,mk

,
−→
Xk) → r

where Si = {si,1, . . . , si,mi
} and Xi = (Var(l)∪Var(T1∪· · ·∪Ti−1)) ∩ (Var(Ti)∪

Var(Si+1∪Ti+1∪· · ·∪Sk∪Tk)∪Var(r)) for 1 ≤ i ≤ k. The set U(R) =
⋃

ρ∈R U(ρ)

is an EV-TRS over the extended signature FU(R) = F ∪ {uρ
i | ρ ∈ R, 1 ≤ i ≤ |ρ|}.

The set Xi in the above definition plays the role of delivering values to the later
conditions; these values are obtained via variables in either l, T1, · · · or Ti−1, and
they are used in either r, Si+1, . . . , Sk or Ti, . . . , Tk. The above unraveling U is
based on the unraveling UO [4, 7–9], in which the definition of Xi is different from
the original definition [10]. For this reason, all results in this paper or [7–9] do
not hold for the original unraveling. In the above definition, one can freely divide
a conditional part into groups of conditions that satisfy the variable-occurrence
condition. The set U(ρ) is equal to UO(ρ) if mi = 1 for every i, and it is equal
to UN (ρ) if k = 1. Thus, UO and UN are special cases of U. For the purpose
of reducing the number of unconditional rules, this paper assumes that ρ in the
above definition satisfies Var(si,j) 6⊆ Var(l) ∪ Var(T1 ∪ · · · ∪ Ti−2) for 1 < i ≤
k and 1 ≤ j ≤ mi. Under this assumption, U(ρ) is determined uniquely.

Example 2. The conditional rule ρ1 is unraveled by U into U(ρ1) = { f(x, y) →
u
′
1(g(x), g(y), x), u

′
1(w, z, x) → u3(h(w, x), z), u3(z, z) → z}. The number of rules

obtained by U is five while that obtained by UO is six.

Next, we give the notion of simulation-completeness based on completeness
of ultra-properties [6].

Definition 3. Let U be an unraveling and R be a CTRS over a signature F .

– U is said to be
∗
−→R-preserving for R if U preserves reachability of R, that

is, for all terms s and t ∈ T (F ,V), s
∗
−→R t implies s

∗
−→U(R) t.

1 It is clear that every deterministic conditional rewrite rule can be expressed like this.



40 Naoki Nishida, Tomohiro Mizutani, Masahiko Sakai

– U is simulation-sound for R if U is sound for unreachability of R, that is,
for all s and t ∈ T (F ,V), s

∗
−→R t if s

∗
−→U(R) t.

– U is simulation-complete for R if U is complete (
∗
−→R-preserving and sound

for
∗
−→R), that is, for all s and t ∈ T (F ,V), s

∗
−→R t if and only if s

∗
−→U(R) t.

We similarly define these properties for the unraveled system U(R).

The definition of simulation-completeness in [7–9] is different from that used
in this paper. More precisely, simulation-completeness in [7–9] corresponds to
simulation-soundness in this paper. However, discussions on the simulation-
completeness in those papers are essentially equivalent because

∗
−→R-preserving

holds for all CTRSs.
All proposed unravelings are

∗
−→R-preserving for every target CTRS because

∗
−→R-preserving is a necessary condition for a transformation that is an ‘un-
raveling’. On the other hand, in general, they are not simulation-sound for all
target CTRSs, and hence are simulation-incomplete. The cause is that the un-
raveled CTRSs are approximations of the original CTRSs. In [6], we can find
a counterexample against simulation-completeness of UN , UO and Ohlebusch’s
unraveling.

A restriction to reductions of the unraveled CTRSs for avoiding this difficulty
on simulation-incompleteness of UO is shown in [8], which is done by a particular
context-sensitive and membership condition that prohibits reductions associated
with the following redexes:

– redexes that occur strictly below U symbols, except for the first arguments
of the U symbols, or

– redexes that contain a U symbol in their proper subterms.

The context-sensitive condition µρ for ρ in Definition 1 and the membership
condition become as follows:

– µρ(u
ρ
i ) = {1, . . . ,mi} for every u

ρ
i , and

– the membership condition is “∈ T (F ,V)”.

The context-sensitive condition µR for R is defined as µR(uρ
i ) = µρ(u

ρ
i ) (and

µ(f) = {1, . . . , n} for all n-ary symbols f ∈ F). For U(ρ1) in Example 2, the
context-sensitive condition µρ1

is specified as µρ1
(u′1) = {1, 2} and µρ1

(u3) =
{1}. We denote the CS-TRSs (U(ρ), µρ), (U(R), µR) and (UO(R), µR) by Uµ(ρ),
Uµ(R) and UOµ(R), respectively. We consider Uµ and UOµ as unravelings from
CTRSs to CS-TRSs.

Theorem 4 ([8]). For every deterministic CTRS R over a signature F , UOµ

is simulation-complete (with respect to the membership-condition “∈ T (F ,V)”),
that is, for all s and t ∈ T (F ,V), s

∗
−→R t if and only if s

∗
−−−−−−→
∈T (F,V) UOµ(R) t.

In the rest of this paper, we assume that the membership condition “∈ T (F ,V)”
is imposed on reductions.

Similarly to other unravelings, U is not simulation-complete for all CTRSs
while U is

∗
−→R-preserving. However, Uµ is always simulation-complete for R with

respect to −−−−−−→
∈T (F,V) Uµ(R).



Transformation for Refining Unraveled Conditional Term Rewriting Systems 41

Theorem 5. Theorem 4 also holds for Uµ.

Proof (Sketch). We only show that the CS-TRS Uµ(R) is simulation-sound for
R, that is, for all s and t in T (F ,V), s

∗
−−−−−−→
∈T (F,V) Uµ(R) t implies s

∗
−→R t. This claim

can be straightforwardly proved by induction on the lexicographic products of
term structure and steps k of s

k
−−−−−−→
∈T (F,V) Uµ(R) t.

Another approach to this proof is to construct the following rule from ρ in
Definition 1; ρ′ : l → r ⇐ tpm1

(s1,1, . . . , s1,m1
) → tpm1

(t1,1, . . . , t1,m1
) ∧ · · · ∧

tpmk
(sk,1, . . . , sk,mk

) → tpmk
(tk,1, . . . , tk,mk

) where tpj is a fresh constructor not
in F that represents the tuple of j terms t1, . . . , tj . This ρ′ is deterministic and

satisfies that UO(ρ′) = U(ρ′) and µρ′(uρ′

i ) = {1}. Let R′ be a CTRS obtained
by the above transformation of the rules in R; then it is clear that −→R = −→R′

and
∗

−−−−−−→
∈T (F,V) (Uµ(R)) =

∗
−−−−−−→
∈T (F,V) (UO(R′),

S

ρ′∈R′ µρ′ )
on terms in T (F ,V). It follows

from Theorem 4 that
∗
−→R′ =

∗
−−−−−−→
∈T (F,V) (UO(R′),

S

ρ′∈R′ µρ′ )
on T (F ,V). Therefore,

we have
∗
−→R =

∗
−−−−−−→
∈T (F,V) (Uµ(R)) on T (F ,V). ut

The transformation in the above proof is also adequate for our purpose. However,
we proposed U because U helps us to describe the transformation proposed later.

4 Reducing Context-Sensitive and Membership

Conditions

In this section, we propose a transformation to relax the context-sensitive and
membership condition of (U(R), µR). In fact, the transformation reduces the
number of U symbols in U(R). This leads to the relaxation of the condition
because the condition depends on the existence of U symbols. Simply speaking,
the transformation folds two rules having the same U symbol into one rule, that
is, the replacement of l1 → l2δ and l2 → r2 with l1 → r2δ where root(l2) is a U
symbol (see Fig. 2). When all U symbols are removed from U(R), we can obtain
an unconditional system that works equally for R without the context-sensitive
and membership condition. There are some cases where the context-sensitive
condition is not necessary even if U symbols are still remaining.

We first give examples showing our intuitive idea of the transformation pro-
cess. For an EV-TRS R, we say that a context-sensitive condition µ is ineffective
for R if µ(f) = {1, . . . , n} for all n-ary symbols f that may be a U symbol. Let
us consider a conditional rewrite rule ρ2 : f(x, y) → z ⇐ g(x) → w∧ f(w, y) → z.
This is unraveled by Uµ to (U(ρ2), µρ2

) where

U(ρ2) = {f(x, y) → u4(g(x), y), u4(w, y) → u5(f(w, y)), u5(z) → z}

and µρ2
(u4) = µρ2

(u5) = {1}. The first and second rules are used in order like
“· · ·

∗
−−−−−−→
∈T (F,V)

f(x, y)σ1 −→ u4(g(x), y)σ1
∗

−−−−−−→
∈T (F,V)

u4(w, y)σ2 −→ u5(f(w, y)σ2)
∗

−−−−−−→
∈T (F,V)

· · ·” where we ignore contexts over this sequence. This reduction se-

quence can be simulated by the rule f(x, y) → u5(f(g(x), y)) as like · · ·
∗

−−−−−−→
∈T (F,V)



42 Naoki Nishida, Tomohiro Mizutani, Masahiko Sakai

f(x, y)σ1 −→ u5(f(g(x), y)σ1)
∗

−−−−−−→
∈T (F,V)

u5(f(w, y)σ2)
∗

−−−−−−→
∈T (F,V)

· · ·. In a similar

fashion, we also remove u5 as follows:

{ f(x, y) → f(g(x), y) }.

The above rule has no U symbol which means the context-sensitive and mem-
bership condition is not necessary.

Let us consider the more complicated case of the rule ρ1. This rule is unrav-
eled to U(ρ1) in Example 2 with µρ1

. Similarly to the previous example ρ2, the
first and second rules are replaced with f(x, y) → u3(h(g(x), x), g(y)). At this
time, possible reductions at position 2 of u

′
1(g(x), g(y), x) must be done at po-

sition 2 of u3(h(g(x), x), g(y)). To allow these reductions, the context-sensitive
condition µρ1

must be updated as µ′
ρ1

(u3) = {1, 2}. Since we have only one
U symbol u3, the context-sensitive condition µ′

ρ1
is ineffective. In this way, we

reduce the number of U symbols from U(R), reducing and updating the context-
sensitive conditions.

The transformation removing U symbols is formalized as follows:

Definition 6. Let ρ be a deterministic conditional rewrite rule over a signature
F . We define pairs (Si, µi) recursively as follows:

1. (S0, µ0) := (U(ρ), µρ)
2.

2. Select a removable U symbol u
ρ
j from Si such that Si = {l → u

ρ
j (t1δ, . . . , tmδ),

u
ρ
j (t1, . . . , tm) → r } ] R′ 3 for some substitution δ, that is,

– (guarding replacing positions) tkδ ≡ tk for all k 6∈ µi(u
ρ
j )

4, and
– (Rmc) if root(r) is a U symbol (let root(r) = u), then no variable in

Dom(δ) is shared between terms at positions in µi(u) and at positions
not in µi(u) 5.

We let Si+1 := {l → rδ} ∪ R′, µi+1(f) := µi(f) for f ∈ FU(ρ) \ {u
ρ
j} and

– (updating µ) if root(r) is a U symbol, let root(r) = u, then µi+1(u) :=
µi(u) ∪ { k | 1 ≤ k ≤ m, r|k ∈ Dom(δ) }.

We denote (Si, µi) by Ti(Uµ(ρ)), and define T(Uµ(ρ)) = (Si′ , µi′) where (Si′ , µi′)
= (Si′+1, µi′+1). For a deterministic CTRS R, we define T(Uµ(R)) = (

⋃

ρ∈R Rρ,
⋃

ρ∈R µρ) where T(Uµ(ρ)) = (Rρ, µρ). Note that
⋃

ρ∈R µρ is well-defined as a
mapping because the domains of µρs are disjoint.

The above transformation always terminates because the number of U symbols
are finite and a U symbol is removed at every step, that is, i′ is at most |ρ|.

Example 7. Uµ(ρ1) is transformed by T into T(Uµ(ρ1)) = (R1, µR1
) where R1 =

{ f(x, y) → u3(h(g(x), x), g(y)), u3(z, z) → z } and µR1
(u3) = {1, 2}. The mem-

bership condition is necessary for the above system because of the existence of U

2 We write µ = µ′ if µ(f) = µ′(f) for all f .
3 These two rules are the only rules in Si which contain u

ρ
j .

4 More precisely, Dom(δ) ⊆ (
S

k∈µi(u
ρ
j
) Var(tk)) \ (

S

k 6∈µi(u
ρ
j
) Var(tk)).

5 That is, Dom(δ) ∩ (
S

k∈µi(u) Var(tk) ∩
S

k 6∈µi(u) Var(tk)) = ∅.



Transformation for Refining Unraveled Conditional Term Rewriting Systems 43

symbols u3. On the other hand, the above µR1
is ineffective for R1. Therefore, we

succeed in removing the context-sensitive condition, although the membership
condition still remains.

There are non-deterministic choices for selecting U symbols at the second
step in Definition 6 because there are possibly some removable U symbols. This
means that the final products of T for Uµ(R) are not unique in general. For
example, consider the conditional rule ρ3 : f(x, x′) → z ⇐ g(x) → y ∧ g(x′) →
z ∧ g(y) → w ∧ h(w, z) → z. Here, there are two results of T(Uµ(ρ3)) while they
become unique if the fourth condition f(w, z) → z is replaced with f(w, z) → v.
The same is said of UO(R). As another example, consider the rule ρ4 : f(x, x′) →
h(y, w) ⇐ g(x) → y ∧ g(x′) → z ∧ h(y, z) → w ∧ g(y) → b. There are two results
of T(UOµ(ρ4)) and they become unique if the fourth condition is removed from
ρ4. On the other hand, T(Uµ(ρ4)) is unique. This means that the improvement
of UO in Section 3 is effective for some cases. In this way, the result of T is
not always unique. However, it is clear that the number of all possible results is
finite. Therefore, one can select the most ‘favorite’ in all results, for instance, one
of the results whose number of rules is the least. Note that the transformation T

does not always succeed in removing all U symbols even if we search all possible
results exhaustively. To determine T(Uµ(R)) uniquely, in this paper, we select
the u

ρ
j at every step of Si, whose index j is the greatest in all removable U

symbols of ρ.

The condition Rmc in Definition 6 is necessary for preserving simulation-
completeness. In other words, ignoring this condition leads to systems with-
out simulation-completeness. For example, consider the CTRS R2 = {ρ3} ∪ R3

where R3 = { g(a) → b, g(b) → c, h(g(x), g(a)) → b }. The CTRS R2 is un-
raveled by U and transformed by T into (R′

2, µ2) where R′
2 = R3 ∪ { f(x, x′) →

u6(g(g(x)), g(x′)), u6(w, z) → u7(h(w, z), z), u7(z, z) → z } and µ2(u7) = {1}.
Furthermore, consider the CS-TRS (R4, µ4) where R4 = R3 ∪ { f(x, x′) →
u7(h(g(g(x)), g(x′)), g(x′))), u7(z, z) → z } and µ4(u7) = {1, 2}. The system
(R4, µ4) is obtained by applying T to (R′

2, µ2), ignoring Rmc. This system is
not simulation-complete for Uµ(R2) because we have f(a, a)

∗
−→(R4,µ4)

b but not

f(a, a)
∗
−→

Uµ(R2)
b. The variable z at position 2 of the term u6(h(y, z), z) should

be used only for delivering value. For this reason, this z should not be instanti-
ated by T with any term that does not finish being evaluated. This observation
brings the condition Rmc to the transformation T.

One may think that ‘simplification’ in completion procedures appear ade-
quate. However, it is too powerful for folding rules and hence it does not always
preserve simulation-completeness and it sometimes collapses the feature of the
conditional rules that we will describe later. The reason is that applying ‘sim-
plification’ ignores Rmc. Thus, ‘simplification’ is not adequate for our purpose.

Finally, we show correctness of T, that is, simulation-completeness of T.

Lemma 8. Let ρ be a conditional rewrite rule in a deterministic CTRS R

over a signature F , and s and t be terms in T (F ,V). Suppose that Ti(Uµ(ρ))



44 Naoki Nishida, Tomohiro Mizutani, Masahiko Sakai

= (Ri, µi), Ti+1((Ri, µi)) = (Ri+1, µi+1) and Uµ(R \ {ρ}) = (R′, µ′). Then s
∗

−−−−−−→
∈T (F,V) (Ri∪R′,µi∪µ′) t if and only if s

∗
−−−−−−→
∈T (F,V) (Ri+1∪R′,µi+1∪µ′) t.

Proof (Sketch). Since we can easily prove the case that r in Definition 6 is
not rooted with a U symbol, we only consider the remaining case. Moreover,
proving the only-if part is not difficult. Hence, we only prove the if part by
induction on the lexicographic products of term structure and the length of the
reduction sequences. To simplify this proof, we use underlines for active positions,
and −−−−−−→

∈T (F,V) (Ri∪R′,µi∪µ′) and −−−−−−→
∈T (F,V) (Ri+1∪R′,µi+1∪µ′) are denoted by −→i and

−→i+1, respectively.
We can assume without loss of generality the following:

– Ri \ Ri+1 = { l → u
ρ
j (f(u, u, u′, y), z), u

ρ
j (f(x, x, x′, y), z) → u(s′, x, y, z) },

– Ri+1 \ Ri = { l → u(s′δ, xδ, y, z) },
– u(t′, x, y, z) → r′ ∈ Ri and u(t′, x, y, z) → r′ ∈ Ri+1.

where δ = {x 7→u, x′ 7→u′}, µi(u
ρ
j ) = µi(u) = {1} and µi+1(u) = {1, 2}. It follows

from Rmc that x 6∈ Var(s′). We only show the most difficult case. Suppose
that s

∗
−→i+1 lσ1 −→i+1 u(s′δ, xδ, y, z)σ1

∗
−→i+1 u(t′, x, y, z)σ2 −→i+1 r′σ2

∗
−→i+1 t

where Ran(σ1) ∪ Ran(σ2) ⊆ T (F ,V). Then, it follows from the context-sensitive
condition that yσ1 ≡ yσ2 and zσ1 ≡ zσ2. By the induction hypothesis, we have s
∗
−→i lσ1, s′δσ1

∗
−→i t′σ2, xδσ1

∗
−→i xσ2, and r′σ2

∗
−→i t. It follows from x 6∈ Var(s′)

that s′δσ1 ≡ s′σ1. Let θ = {x 7→ xσ2, x
′ 7→ u′σ1, y 7→ yσ2, z 7→ zσ2}. Therefore,

we have s
∗
−→i lσ1 −→i u

ρ
j (f(u, u, u′, y), z)σ1

∗
−→i u

ρ
j (f(xσ2, xσ2, u

′σ1, yσ1), zσ1)

≡ u
ρ
j (f(x, x, x′, y), z)θ −→i u(s′, x, y, z)θ ≡ u(s′σ1, xσ2, yσ2, zσ2)

∗
−→i u(t′σ2, xσ2,

yσ2, zσ2) −→i r′σ2
∗
−→i t. ut

Theorem 9. Let R be a deterministic CTRS over a signature F . For all s, t ∈
T (F ,V), s

∗
−−−−−−→
∈T (F,V) Uµ(R) t if and only if s

∗
−−−−−−→
∈T (F,V) T(Uµ(R)) t.

From Lemma 8 and Theorems 9 and 5, the composition T(Uµ(·)) of the trans-
formations can be considered as an unraveling with simulation-completeness.

Corollary 10. Theorem 4 also holds for T(Uµ(·)).

5 On Confluence of CTRSs

To prove confluence of CTRSs, simulation-completeness of the unravelings enable
us to use confluence of the unraveled CTRSs.

Theorem 11. Let R be a deterministic CTRS over a signature F . If U(R) is
confluent, then R is confluent.

On the other hand, confluence of CTRSs is not preserved by unravelings,
that is, the converse of Proposition 11 does not always hold in general. Con-
sider a normal form of a confluent CTRS over a signature, which are matched
with the lhs of a conditional rule with at least a condition. The normal form



Transformation for Refining Unraveled Conditional Term Rewriting Systems 45

sometimes becomes reducible on the unraveled CTRS to determine whether the
original conditional part is satisfied, although the conditional part is not satis-
fied. The normal form is not reachable to any terms over the original signature,
and hence it is reduced to a normal form containing a U symbol. Thus, we can see
that terms containing U symbols prevent the unravelings from preserving con-
fluence of CTRSs. For this observation, as far as terms without U symbols are
concerned, confluence of CTRSs are preserved by the unravelings if simulation-
completeness is preserved. The unraveling Uµ and the transformation T preserve
simulation-completeness. Moreover, T sometimes remove all U symbols. In such
cases, confluence of the systems obtained by T(Uµ(·)) coincides with that of the
original CTRSs.

Corollary 12. A deterministic CTRS R over a signature F is confluent if and
only if Uµ(R) (respectively T(Uµ(R))) is confluent on T (F ,V) 6. Especially, let
(R′, µ′) = T(Uµ(R))) and suppose that R′ has no U symbol, then

∗
−→R =

∗
−→R′

(more precisely, −→R′ ⊆ −→R ⊆
+
−→R′), that is, R is confluent if and only if R′ is.

As long as we know, there are no methods to show confluence of Uµ(R) and
T(Uµ(R)) on T (F ,V) if U symbols still remain. However, to decide confluence
of R, we can use ordinary techniques for deciding confluence of T(U(µ(R))) if T

removes all U symbols.
The method in this paper appears to counter the other approaches to con-

fluence, such as Bergstra and Klop’s method [3]. In fact, the unraveled CTRSs
often lose confluence of the original CTRSs as described above. However, the
transformation T recovers the confluence that is lost in the process of the unrav-
elings if all U symbols are removed successfully. Therefore, the transformation
T is sometimes effective for preserving confluence of CTRSs.

6 Refinement of the Condition for Removing U Symbols

It is probably impossible to relax the condition Rmc in Definition 6. To the
contrary, we should tighten Rmc for maintaining a feature of conditional rules
associated with efficiency of reductions. Consider the following ‘ML’ program.

fun twofib 0 = (0,1)

| twofib n = let val m = twofib (n-1)

in (#2 m, (#2 m) + (#1 m) ) end;

It is known that the function twofib efficiently computes pairs of two continuous
Fibonacci numbers. Such efficiency comes from the ‘let’ structure, and the first
part of the ‘let’ structure can be considered as a conditional part. From this
observation, the above program is regarded as the following CTRS:

R5 =











twofib(0) → tp2(0, s(0)),
twofib(s(n)) → tp2(#2(m), add(#2(m), #1(m))) ⇐ twofib(n) → m,

...

6 For all s, t1, t2 ∈ T (F ,V), if s
∗
−→(U(R),µR) t1 and s

∗
−→(U(R),µR) t2 then there exists

a term u ∈ T (F ,V) such that t1
∗
−→(U(R),µR) u and t2

∗
−→(U(R),µR) u.



46 Naoki Nishida, Tomohiro Mizutani, Masahiko Sakai

where tp2(t1, t2) denotes the pair of two terms t1 and t2. The second rule is
unraveled into the system (R6, µR6

) where

R6 = {twofib(s(n)) → u8(twofib(n)), u8(m) → tp2(#2(m), add(#2(m), #1(m)))}

and µR6
(u8) = {1}. Under innermost reduction strategy, efficiency is still alive

in (R6, µR6
). The system (R6, µR6

) can be transformed by T as follows:

twofib(s(n)) → tp2(#2(twofib(n)), add(#2(twofib(n)), #1(twofib(n)))).

T succeeded in removing all U symbols from (R6, µR5
). This corresponds to the

following ‘ML’ program.

fun twofib2 0 = (0,1)

| twofib2 n = ( (#1 (twofib2 (n-1))),

(#2 (twofib2 (n-1)))+(#1 (twofib2 (n-1))) );

However, the above ‘ML’ program loses efficiency.
The ‘let’ structure provides a facility that separates the parallel evaluations

of terms that are identical into one. For example, twofib2 (n-1) is evaluated
once in the first ‘ML’ program and three times in the second ‘ML’ program. The
advantage of coming from the ‘let’ structure is lost in the transformation T, by
instantiating variable m in tp2(#2(m), add(#2(m), #1(m))), whose occurrence is
non-linear, with twofib(n). In order to prevent such instantiation in these cases,
we enhance the condition Rmc as follows:

(Rmc
′) r is linear with respect to Dom(δ).

It is clear that Rmc
′ implies Rmc. The enhanced condition Rmc

′ does not cause
the target systems to lose the essential advantage of the original CTRSs, such
as efficiency that comes from ‘let’ structure. For confluent CTRSs, simulation-
completeness holds without Rmc. However, Rmc

′ should not be ignored because
of the points outlined in the above discussion.

7 Concluding Remarks and Related Works

We firstly show an application of our method. Consider the following rule ob-
tained by the inversion compiler [8], from the TRS that computes multiplication:

ρdiv : div(s(z), s(y)) → tp1(s(x)) ⇐ sub(z, y) → tp1(w) ∧ div(w, s(y)) → tp1(x),

where div and sub compute division and subtraction of natural numbers, respec-
tively, and tpi(t1, . . . , ti) denotes the tuple of i terms t1, . . . , ti. Since we can
consider tp1(t) as t similarly to several functional languages, we can easily see
that the following rule seems to be similar to the above rule in the sense of
computing division 7:

ρ′
div

: div(s(z), s(y)) → s(x) ⇐ sub(z, y) → w ∧ div(w, s(y)) → x.

7 Note that tp1(t) cannot be abbreviated to t in all cases.



Transformation for Refining Unraveled Conditional Term Rewriting Systems 47

This rule is transformed by T(Uµ(·)) into the following rule:

div(s(z), s(y)) → s(div(sub(z, y), y)).

Using T, we succeeded in removing all U symbols from U(ρ′
div

), and the above rule
coincides with the typical rewrite rule of division s(x)÷ s(y) → s((x− y)÷ s(y)).
This tells us that the program generated by the compiler seems to be correct, in
comparison with the handmade program.

Finally, we briefly offer some extra remarks.

– Two syntactic conditions to preserve simulation-completeness without the
context-sensitive and membership condition [7] also hold for U and T(U(·)).
Neither of the two syntactic conditions are sufficient and necessary condition
for removing all U symbols successfully.

– ‘Effective termination’ of CTRSs is preserved by Uµ and T. Thus, termina-
tion of T(Uµ(R)) guarantees ‘effective termination’ of R. When T(Uµ(R))
has no U symbols, termination of T(Uµ(R)) coincides with ‘effective termi-
nation’ of R. Therefore, several methods of proving termination of TRSs are
applicable for proving ‘effective termination’ of R.

– Given a conditional rule, the recursive reduction of the conditional part that
is not terminating sometimes become terminating. Consider the CTRS R7

= { f(x, y) → z ⇐ g(x) → z, a → g(a) }. This CTRS R7 is transformed
by T(Uµ(·)) into R′

7 = { f(x, y) → g(x), a → g(a) }. When f(x, y) → z ⇐
g(x) → z is applied to f(a, a), the recursive reduction of the instantiated
condition g(a) does not terminate. On the other hand, in the case of applying
f(x, y) → g(x), the conditional part is no longer concerned, that is, the
reduction of the condition does terminate.

– It is clear that all CS-TRSs in the process of T can be considered as the
unraveled systems for some CTRSs. For example, R1 corresponds to the
conditional rule f(x, y) → z ⇐ g(y) → z ∧ h(g(x), x) → z.

As another approach to CTRSs, Viry proposed the transformation of nor-
mal or join CTRSs into TRSs [14]. Unlike unravelings, his transformation does
not introduce U symbols but extends the arity of defined symbols. Similarly
to unravelings, his transformation is not simulation-complete for all CTRSs.
The example in [6] is also a counterexample against simulation-completeness of
his transformation. Antoy, Brassel, and Hanus applied Viry’s transformation to
conditional narrowing of constructor-based CTRSs that are restricted normal
CTRSs. [1]. Rosu proposed the transformation of join CTRSs for implementing
an efficient conditional rewriting engine [12]. His transformation seems to pro-
duce unconditional systems that are simulation-complete. However, the main
part to evaluate conditional parts is not defined by rewrite rules but imple-
mented. Thus, his transformation is not suitable for analyzing ultra-properties
of CTRSs. Moreover, neither of Viry’s and Rosu’s transformations are applicable
to deterministic 3-CTRSs.



48 Naoki Nishida, Tomohiro Mizutani, Masahiko Sakai

Acknowledgement. This work is partly supported by MEXT. KAKENHI
#17700009 and #18500011. We thank Professor Yoshihito Toyama for point-
ing out some interesting issues about confluence.

References

1. Antoy, S., Brassel, B., Hanus, M.: Conditional narrowing without conditions. In:
Proceedings of the 5th International ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming (PPDP’03), ACM (2003) 20–31

2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press (1998)

3. Bergstra, J.A., Klop, J.W.: Conditional rewrite rules: Confluence and termination.
Journal of Computer and System Sciences 32 (1986) 323–362

4. Durán, F., Lucas, S., Meseguer, J., Marché, C., Urbain, X.: Proving termination
of membership equational programs. In Heintze, N., Sestoft, P., eds.: Proceedings
of the 2004 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-based
Program Manipulation (PEPM), ACM (2004) 147–158

5. Lucas, S.: Context-sensitive computations in functional and functional logic pro-
grams. Journal of Functional and Logic Programming 1998 (1998)

6. Marchiori, M.: Unravelings and ultra-properties. In: Proceedings of the 5th Inter-
national Conference on Algebraic and Logic Programming (ALP’96). Volume 1139
of Lecture Notes in Computer Science, Springer (1996) 107–121

7. Nishida, N., Sakai, M., Sakabe, T.: On simulation-completeness of unraveling for
conditional term rewriting systems. IEICE Technical Report SS2004-18, the In-
stitute of Electronics, Information and Communication Engineers (IEICE) (2004)
Vol. 104, No. 243, pp. 25–30.

8. Nishida, N., Sakai, M., Sakabe, T.: Partial inversion of constructor term rewrit-
ing systems. In: Proceedings of the 16th International Conference on Rewriting
Techniques and Applications. Volume 3467 of Lecture Notes in Computer Science,
Springer (2005) 264–278

9. Nishida, N., Sakai, M., Sakabe, T.: Generation of inverse computation programs of
constructor term rewriting systems. The IEICE Transactions on Information and
Systems J88-D-I (2005) 1171–1183 (in Japanese).

10. Ohlebusch, E.: Termination of logic programs: Transformational methods revisited.
Applicable Algebra in Engineering, Communication and Computing 12 (2001) 73–
116

11. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer (2002)
12. Rosu, G.: From conditional to unconditional rewriting. In: Revised selected papers

of the 17th International Workshop on Recent Trends in Algebraic Development
Techniques (WADT 2004). Volume 3423 of Lecture Notes in Computer Science,
Springer (2005) 218–233

13. Toyama, Y.: Confluent term rewriting systems with membership conditions. In:
Proceedings of the 1st International Workshop on Conditional Term Rewriting
Systems (CTRS). Volume 308 of Lecture Notes in Computer Science, Springer
(1987) 228–241

14. Viry, P.: Elimination of conditions. Journal of Symbolic Computation 28(3) (1999)
381–401



An Account of Implementing

Applicative Term Rewriting

Sixth Int’l Workshop on Reduction Strategies in Rewriting and Programming (WRS’06)
S. Antoy (ed.), Seattle, Washington, August 11, 2006
Portland State University, Tech. Report 06-04, pages 49-63

Muck van Weerdenburg?

Eindhoven University of Technology??

Department of Mathematics and Computer Science

Abstract. Generation of labelled transition systems from system speci-
fications is highly dependent on efficient rewriting (or related techniques).
We give an account of the implementation of two rewriters of the mCRL2
toolset and evaluate them by comparing them with other commonly used
efficient rewriters.

1 Introduction

The mCRL2 language and toolset [7] support modelling and verification of sys-
tems. Verification mainly consists of model checking, which means that a La-
belled Transition System (LTS) is generated from a system specification and
requirements are checked on this LTS. However, the task of generating LTSs is
very time and space demanding. Generation of typical state-spaces of, say, 107

transitions requires at least a few times more than 107 calls to the rewriter. In
fact, inspection of this process in the mCRL2 toolset shows that more than 90%
of the time of generating an LTS is spent rewriting.

Apart from on-the-fly LTS reductions, there are two clear paths towards
optimisation of LTS generation. One is to reduce the number of times the LTS
generator uses the rewriter. The other, which we consider here, is to optimise
the rewriting procedure.

We discuss two implementations we have made for the mCRL2 toolset. One
uses innermost rewriting, the other JITty [15]. The latter is a strategy close
to lazy rewriting (i.e. rewriting (sub)terms only when needed). Essential is that
these rewriters are compiling rewriters, meaning that they generate a specialised
rewriter for a given specification. Also, they support rewriting of open terms (i.e.
terms in which (free) variables may occur), which is required for LTS generation.

As mCRL2 has a higher-order data language, rewriting is on higher-order
(applicative) terms. Due to the fact that higher-order matching is at least as
hard as NP-complete problems [2], we restrict the rewriting to using only simple
syntactic pattern matching. This basically boils down to rewriting applicative
terms without being able to do η-reductions. It seems that this restriction does

? E-Mail: M.J.van.Weerdenburg@tue.nl
?? Address: P.O. Box 513, 5600 MB Eindhoven, The Netherlands



50 Muck van Weerdenburg

not really restrict the practical use of the rewriter (at least not with case studies,
such as [10], so far), but the precise implications should be subject to future
research. But even if our choice is too restricted for general purpose, a limited,
but fast rewriter is still very useful for a large set of problems.

In order to implement efficient matching we use an adaptation of existing
algorithms that, instead of matching each rule separately, combine sets of rules
into a tree structure that allows to match these rules simultaneously. Although
implementations of such algorithms often require left-hand sides to contain each
variable at most once (i.e. the left-hand sides must be linear), our implementa-
tion does not have this restriction.

Another important optimisation is to avoid rewriting normal forms multiple
times. Although this is fairly easy with innermost rewriting, it is much more
involved in the JITty rewriter.

In short, we have implemented a compiling JITty rewriter for conditional
rewrite rules on open applicative term, making use of efficient matching of non-
linear applicative terms, which is the first of its kind (as far as we know).

We first introduce the part of the mCRL2 data language that is relevant for
rewriting and the general architecture of our implementations in Sect. 2. In
Sect. 3 we discuss the matching algorithm used and Sect. 4 and 5 contain the
descriptions of the innermost and JITty rewriters, respectively. We conclude
with an analysis of some benchmarks in Sect. 6.

2 Preliminaries

The data language we consider here is the core data language of mCRL2. It
has only one operator, viz. application. The complete data language contains
many additional constructs for ease of modelling (including λs), but they are all
expressible in this core. From this point on, we will refer to this core simply as
the mCRL2 language (or even just mCRL2).

The signature (Σ) of mCRL2 consist of a set of basic sorts SB , a set
of variables V and a set of function symbols F. Each variable or function
symbol has a sort. Sorts s are defined as follows, where b ∈ SB and → is right-
associative:

s := b | s→ s

With xs ∈ V a variable of sort s and fs ∈ F a function symbol of sort s, the
definition of mCRL2 terms ts of sort s is as follows:

ts := xs | fs | ts′→s(ts′)

Typical basic sorts are the booleans B or the integers Z. Function symbols are,
for example, true or even. The sorts as subscripts of terms are usually omitted.
Given a term f(t1) . . . (tn) we call f the head symbol and ti the ith argument.
The arity of a function symbol is the maximal number of arguments it can have.



An Account of Implementing Applicative Term Rewriting 51

For readability we usually write terms with sequences of applications (i.e. terms
t(u)) such as ((f(w))((g(x))(y)))(z) simply as f(w, g(x, y), z).

Rewrite rules are of the form t → u if c, where terms t and u have the
same sort. Term c of sort B is the condition of a rewrite rule indicating whether
or not the rule may be applied (i.e. only when c rewrites to true). Often we omit
this condition in the case c is (syntactically) equal to true.

We write (Σ,→) for a signature Σ and set of rewrite rules → to denote a
Term Rewrite System (TRS).

The architecture of the rewriters is as follows. The rewriters first preprocess the
TRS by sorting the rules by head symbol. For each head symbol f and number of
arguments n that f can have, we create a specialised function rewr f (t1 , . . . , tn)
that returns a normal form of the term f(t1) . . . (tn). The code of a function
rewrf is the implementation of the match tree(s) generated for the set of rules
of f . Also a main rewrite function is added that takes a single term t and calls
the specialised function for the head symbol of t. Depending on the strategy it
also rewrites the arguments of a function symbol, before calling its specialised
function.

For reasons of efficiency we use implicit substitutions. This means that,
instead of first substituting specific values for variables and then rewriting the
term, we apply substitution on-the-fly during rewriting (i.e. we rewrite in a
context of substitutions). This basically boils down to replacing a variable with
its value as soon as it is encountered. We can, however, also encounter terms of
the form x(t1, . . . , tn). In the case that x is not bound to a value we can just
ignore it and rewrite its arguments. Otherwise, we need to get the value of x,
append the arguments t1, . . . , tn and then rewrite that term.

For the implementation of the data terms we use the ATerm [19] library. This
automatically gives us term sharing1 and constant time equality tests. Construc-
tion of terms, however, is more expensive.

3 Match trees

Straightforward implementations of rewrite systems will try to match the term to
be rewritten with every left-hand side of a rewrite rule separately. For example,
with the system {t1 → u1, t2 → u2} one could first try to match a term with t1
and afterwards, if it did not match, with t2 (or vice versa).

That this is not a very efficient manner of matching can be seen clearly
by looking at rules for equality functions. Assuming a sort S with n simple
constructors (i.e. without arguments), the equality on S needs n2 rules (for
every pair in S × S).2 However, by combining these rules into a specific tree
structure, we can test for a match in the order of n.

1 That is, equal (sub)terms are only stored once in memory. Note that changing a
term in one place will not automatically change (equal) terms in other places.

2 Note that many languages allow for more compact notations by assuming an order
on rules. Such features are in general not safe when rewriting with open terms (e.g.



52 Muck van Weerdenburg

This method is similar to the ones used in the ASF+SDF [17] rewriters [18]
and ELAN [20]. For rules with linear left-hand sides (i.e. left-hand sides in which
variables occur at most once), algorithms to create such trees can be found in
[12, 1, 14]. As we have applicative terms and allow nonlinear rewrite rules, our
approach deviates a bit. Note that in ASF+SDF nonlinear rules are also allowed,
but converted to linear rules, which requires additional side conditions.

Match trees determine the way a term is matched; each node of a tree represents
a basic instruction and guides the path through the tree. We start at the root
and walk up the tree, choosing branches based on the result of matching so far.
For example, one node could be to check whether a (sub)term has a specific head
symbol. Matching continues with one branch if the symbol was found and the
other branch otherwise.

The way a term is traversed during matching is as follows. Matching a term
f(t1, . . . , tk) according to a match tree m starts with argument t1 of f and
executing the specific functionality of m. We do not have to match f itself as
we make a specialised rewrite function that handles only terms starting with f
(for each symbol f). At any point during execution of the matching algorithm
there is a context of values bound to variables (i.e. a context of substitutions)
and a stack of terms to be matched. Initially the context is empty and the stack
consist of the arguments t1 to tk of f (with t1 on top). The matching algorithm
always considers the top of the stack, which we refer to as g(u1, . . . , ul). During
matching the context will be built up, resulting in a substitution that makes the
left-hand side of the matching rule equal to f(t1, . . . , tk).

Our match trees m have the following structure, with x ∈ V, f ∈ F and
term t.

m ::= S(x,m) |M(x,m,m) | F (f,m,m) | N(m) | C(t,m,m) | R(t) | X

We give an intuition of functionality of the trees before giving the actual match-
ing function. A S(x,m) binds the top of the stack to variable x and continues
with tree m. Such a value bound to x is tested for equality with the top of the
stack with M(x,m, n), which continues with tree m on equality and n otherwise.
With F (f,m, n) matching continues with u1, . . . , ul on top of the stack and tree
m if f is equal to g. If not, tree n is used without changing the stack. Node
N(m) removes the top of the stack and continues with m. A condition b can
be checked with C(b,m, n). A successful match is indicated by R(t), where t is
the result of applying a matching rule. Unsuccessful matches occur with X and
when the stack is empty (i.e. there are too few arguments).

Let σ be a context, σ[x 7→ t] the context σ in which term t is bound to
variable x and σ(t) a term t in which every variable is replaced by the value
bound to it in σ. Also let [] denote the empty stack and t ¤ s term t on top of
stack s. The definition of the matching function µ, which returns either X
(no match) or R(t) (match with result t), is as follows:

rewriting f(x) does not terminate in the system f(0) → e ; f(n) → g(f(n− 1))). In
mCRL2 we use standard conditional rewriting.



An Account of Implementing Applicative Term Rewriting 53

µ(m, σ, []) = X
µ(S(x,m), σ, t¤ s) = µ(m,σ[x 7→ t], t¤ s)
µ(M(x,m, n), σ, t¤ s) = µ(m,σ, t¤ s) if σ(x) = t
µ(M(x,m, n), σ, t¤ s) = µ(n, σ, t¤ s) if σ(x) 6= t
µ(F (f,m, n), σ, g(u1, . . . , un)¤ s) = µ(m,σ, u1 ¤ . . .¤ un ¤ s) if f = g
µ(F (f,m, n), σ, g(u1, . . . , un)¤ s) = µ(n, σ, g(u1, . . . , un)¤ s) if f 6= g
µ(N(m), σ, t¤ s) = µ(m,σ, s)
µ(C(b,m, n), σ, t¤ s) = µ(m,σ, t¤ s) if σ(b)
µ(C(b,m, n), σ, t¤ s) = µ(n, σ, t¤ s) if ¬σ(b)
µ(R(r), σ, t¤ s) = R(σ(r))

To illustrate the use of the match trees and give some intuition on how we
build such trees, we consider the rewrite rules f(g(x), x) → x and f(x, x) → c
if h(x). In Fig. 1 the match tree for the first rule is shown. We can see that the
root node (on the far left) checks whether the head symbol of the first argument
is a g or not. If this is the case, it binds the argument of g to x and proceeds to
the next argument. As g has only one argument, this means we look at the next
argument of the enclosing function f . The M node checks to see if this argument
is the same as the value of x and returns the result (also x) if this is the case.
Note that the head symbol f is not in the tree at all as we make trees for rules
with the same head symbol.

F(g)

S(x)

true

Xfalse

N M(x)

R(x)

true

Xfalse

Fig. 1. Match tree for f(g(x), x) → x

The tree for the conditional rule is shown in Fig. 2. Here we see that the first
argument is stored and the second argument is matched with the first argument.
If they are the same, the condition h(x) is checked, using the value bound to x,
before returning the result c.

S(x) N M(x)

Xfalse

C(h(x))

true Xfalse

R(c)

true

Fig. 2. Match tree for f(x, x) → c if h(x)

Finally, we combine both trees to the complete match tree for function symbol
f , as shown in Fig. 3.

Such a combination is made by interleaving the trees and synchronising on N
nodes. The following rules give a simplified version of our algorithm to compute



54 Muck van Weerdenburg

S(v) F(g)

Nfalse

S(w)

true

M(v)

X
false

C(h(v))
true

X
false

R(c)
true

N M(w) R(w)
true

M(v)

false
Xfalse

C(h(v))

true Xfalse

R(c)

true

Fig. 3. Combined match tree for f

comb(T ), the combination of the trees in T . If more than one rule can be applied,
the one that occurs first in the list below is applied. We write T for a set of trees,
which we can partition in Tf and T \Tf , of which the former contains all F nodes
that check for symbol f (and only those nodes). Projection functions π1 and π2

are used to filter a set of F (f,m, n) nodes to the m, respectively n values. We
write Nf (T ) for T with N nodes added to every tree in it; the amount of added
nodes corresponds to the number of arguments f has (in the pattern). The
substitution of a variable x by y in tree m is denoted by m[y/x]. With x′ we
indicate a fresh variable (i.e. one not occurring in any of the trees).

comb({R(t)} ∪ T ) → R(t)
comb({C(t,m, n)} ∪ T ) → C(t, comb({m} ∪ T ), comb({n} ∪ T ))
comb({M(x,m, n)} ∪ T ) →M(x, comb({m} ∪ T ), comb({n} ∪ T ))
comb({S(x,m)} ∪ T ) → S(x′, comb({m[x′/x]} ∪ T ))
comb({F (f,m, n)} ∪ T ) → F (f, comb(π1(Tf ) ∪Nf (T \ Tf )),

comb(π2(Tf ) ∪ (T \ Tf )) )
comb({N(m0), . . . , N(mk)}) → N(comb({m0, . . . ,mk}))
comb({X} ∪ T ) → comb(T )
comb(∅) → X

The first rule indicates that as soon as there is a tree indicating a positive
match, we can just return that match and ignore the other trees. In the rule for
S we introduce a fresh variable to avoid conflicts with variables in other trees.
When applying the F rule for a symbol f , we consider all trees that have such a
root node. This is done as the first subtree of an F processes arguments of the
matched function symbol and this can only be done once (due to the matching
function). Also, during matching of the arguments (of the subterm), the other
trees that do not participate need to be ignored until f and its arguments are
completely matched. For this reason we add the necessary N nodes to these
trees.

There are several optimisation to the above. For example, between two N
nodes, we can ensure that matching a variable occurs only once and we can
combine all S nodes into one, as they all store the same term. In case both
subtrees of an M or C node are the same, we can replace it with the subtree
itself. Also, S nodes that bind a value to a variable that is never used in the
subtree can be replaced by the subtree.



An Account of Implementing Applicative Term Rewriting 55

4 Compiling Innermost Rewriter

The implementation of the innermost rewriter is very similar to that of the
µCRL toolset [3] and ASF+SDF. We discuss the main points. To achieve optimal
performance, compilation of a specific rewrite system is essential. This is done as
described in Sect. 2. The main rewrite function would be of the following form
(not considering implicit substitutions and variables as head symbols):

function innermost(f(t1, . . . , tn))
for i ∈ {1, . . . , n} do

ti := innermost(ti)
return rewrf (t1, . . . , tn)

A specialised function for a function symbol f uses the match tree for f to
see if any rule can be applied. If this is the case, the right-hand side of that
rule is built and the generic rewrite function is called on this term. If no rule
matches, then the original term is built and returned. An example of the code
that would be generated of a function with rewrite rule f(c, x) = g(h(x), x) is
as follows.

function rewrf (arg1, arg2)
if arg1 = c then

return rewrite(g(h(arg2), arg2))
else

return f(arg1, arg2)

One important optimisation is that of avoiding needless traversal of normal

forms. The main observation here is that one can assume that the arguments of a
specific rewrite function are already in normal form. This is the case when called
from the main rewrite function, as it first explicitly rewrites these arguments,
and also needs to be the case when called from a specific rewrite function.

We achieve this optimisation by taking the instantiations of the variables of
the matching rewrite rule, which are in normal form by definition, and building
up the term around it with the appropriate specific rewrite functions. For exam-
ple, if we need to build a term g(h(x), x), we call the specific rewrite function
of h on the instantiation of x, returning the normal form of h(x), and then call
the specific rewrite function of g with the previous result and the instantiation
of x. The rewrite function for f then becomes as follows:

function rewrf (arg1, arg2)
if arg1 = c then

tmp := rewrh(arg2)
return rewrg(tmp, arg2)

else

return f(arg1, arg2)

In our case we also have to consider applicative terms. This means that a
function of arity n has at most n arguments (instead of exactly n). This is solved
by generating specific rewrite functions for each function symbol and number of
arguments allowed. So, for f we would have two additional rewrite functions (i.e.
one for one argument and another for no arguments at all).



56 Muck van Weerdenburg

5 Compiling JITty Rewriter

When rewriting a term f(t1, . . . , tn) the JITty strategy delays rewriting of ar-
guments ti as long as they are not needed for matching. By doing so, it avoids
rewriting terms that can be removed without ever being used. A typical example
is the if , which often has the following rules:

α : if (true, x, y) → x
β : if (false, x, y) → y
γ : if (b, x, x) → x

Instead of rewriting all arguments first and then matching these rules, like
innermost rewriting does, JITty uses a strategy to, for example, only rewrite the
first argument and then check rules α and β. Only if these rules do not match,
the other arguments are rewritten and γ is matched. Such a strategy, written
as [{1}, {α, β}, {2, 3}, {γ}], can be computed automatically. Note that strategies
need to be full and in-time [15], which means that all rules and argument indices
must occur in the strategy and every argument index must occur before the rules
that need that argument for matching.

Concerning code generation, this strategy differs from innermost in the fact
that the generic rewrite function no longer rewrites the arguments of a function
before calling its specific rewrite function. Instead the specific rewrite function
itself does this, as specified by the strategy for this function symbol. Also, where
there is only one match tree for all rules (with the same head symbol) in inner-
most, with JITty we have a match tree per set of rewrite rules in the strategy.
In the above example this would mean there is a tree matching both rule α and
β and a tree matching γ.

The code for a strategy is generated such that the elements in the strategy
are executed in order. For the if this would mean that the corresponding specific
function will consist of first rewriting the first argument, then the code for the
match tree of {α, β}, etc., as can be seen in the following code.

function rewr if (arg1, arg2, arg3)
arg1 := rewrite(arg1)
if arg1 = true then

return arg2

else if arg1 = false then

return arg3

else

arg2 := rewrite(arg2)
arg3 := rewrite(arg3)
if arg2 = arg3 then

return arg2

else

return if (arg1, arg2, arg3)



An Account of Implementing Applicative Term Rewriting 57

5.1 Strategy generation

Because we do not want to burden our users with supplying strategies themselves,
we need to generate reasonable strategies from a given set of rewrite rules (i.e.
one strategy per function symbol). This is done by observing which arguments
need to be rewritten to be able to match a given rule. An argument that is
needed for matching by most rules is added to the strategy, indicating it needs
to be rewritten first. When there are rules for which all arguments essential for
matching are rewritten, this rule is added to the strategy. This process continues
until all rules and arguments are in the strategy.

More formally, let dep(r) be a function that returns the indices of the argu-
ments that need to be rewritten before matching rule r, i.e. (with vars(t) the
variables occurring in t)

dep(f(t1, . . . , tk) → u) = {i : ti 6∈ V ∨ ti ∈
⋃

j 6=i

vars(tj)}

Also, let occ(i, Rf ) be a function that returns the number of rules of Rf that
require argument i:

occ(i, Rf ) = #{r ∈ Rf : i ∈ dep(r)}

We denote the empty strategy with [] and a set S of argument indices or rewrite
rules prepended to a strategy l by S ¤c l. Here, ¤c only adds S to l if S is
not empty (i.e. ∅ ¤c l = l). A strategy for a set of rules Rf is generated with
strat(Rf , ∅), where strat(R, I) is defined as follows, for any set of rules R ⊆ Rf

and set of indices I ⊆ {1, . . . , ar(f)} (with I the set of argument indices added
to the strategy so far and ↑ the maximum quantifier):

strat(∅, I) = ({1, . . . , ar(f)} \ I)¤c []

strat(R, I) = T ¤c J ¤c strat(R \ T, I ∪ J) if R 6= ∅

where T = {r ∈ R : dep(r) ⊆ I},

U = {i : i 6∈ I ∧ occ(i, R \ T ) =↑j 6∈I occ(j, R \ T )}

If we look at the if above, we see that the first argument is needed for two
rules (α and β) and the other arguments are needed only for γ. So, the first
argument is added to the (empty) strategy, after which all essential arguments
for α and β are in the strategy and they can be added to the strategy. Then only
γ remains to be added, which means that the remaining arguments be added
first.

Our approach deviates from the just-in-time strategy as defined in [15] in
two ways. First of all, we do not require arguments to be rewritten in order.
This way we basically get the same strategy as before when we permute the
arguments of the if . We also do not preserve in any way the order in which rules
were specified by the user while just-in-time would (as far as a strategy allows
this).



58 Muck van Weerdenburg

5.2 Normal forms

Unlike innermost rewriting, JITty rewriting does not allow for a simple build up
mechanism (as described in Sect. 4). To avoid rewriting normal forms we want
to tag terms to indicate that they are in normal form (or not). A simple way
is to add an extra function symbol ν, such that ν(t) means that t is in normal
form (which is done in [16]). However, such an addition results in a time penalty
due to additional construction of terms.

Our approach is to introduce extra function symbols f s for each original
function symbol f . Each extra symbol f s has an annotation s indicating which
of its arguments is in normal form. For example, f 011 indicates that the second
and third arguments are in normal form. We will write ε for the absence of an
annotation (i.e. f ε is equal to f). Note that having these additional symbols does
not add extra costs in construction of terms as the construction only differs in
which function symbol is used. And because of the way it is used, normal forms
will always be built up of the original function symbols, thus matching does not
change at all. The only change is the increase of the number of rewrite methods,
which only effects initialisation time and needed (static) memory.

To use these annotations we need to convert the rewrite rules in such a way
that they use the annotations. Given a set of variables N and a term t we define
ψ(t,N) to be the annotated version of t under the assumption that (the values
bound to) the variables ofN are in normal form. More precisely (where [true] = 1
and [false] = 0):

ψ(x,N) = x
ψ(f(t1, . . . , tn), N) = f [t1∈N ]...[tn∈N ](ψ(t1, N), . . . , ψ(tn, N))

Let ar(f) denote the arity of function symbol f , vars(t) the set of variables
occurring in t and depf (r) the indices of arguments of f that the JITty strategy
will have rewritten before trying to apply rewrite rule r. We define a transfor-

mation function φ on TRSs such that φ((Σ,→)) = (Σ ′,→′), where Σ′ and
→′ are defined as follows:

Σ′ = {fs : f ∈ Σ ∧ s ∈
⋃

0≤i≤ar(f){0, 1}
i }

→′ = {fs(t1, . . . , tn) → u′ if c′ : f(t1, . . . , tn) → u if c = r ∈ → ∧
s ∈ {ε} ∪ {0, 1}n ∧
N =

⋃
i∈depf (r) ∨ s.i=1 vars(ti) ∧

c′ = ψ(c,N) ∧ u′ = ψ(u,N)
} ∪ {fs → f if true : s 6= ε ∧ f s ∈ Σ′}

This translation adds the annotated function symbols and annotated copies
of the rewrite rules. It makes sure that the right-hand side of rules correctly uses
the annotations based on the annotation of the head symbol of the left-hand
side and which arguments will be rewritten before application. It also adds rules
to remove the annotations.

For these latter rules the code generation has to be adapted such that these
are only applied in case no other rule matches. This way we make sure that



An Account of Implementing Applicative Term Rewriting 59

normal forms are always without annotations, which ensures that matching does
not have to consider annotations at all. The function symbols with an annotation
indicating that none of the arguments are in normal form can be safely replaced
by the unannotated version.

To illustrate the translation, we look at the following example. Assume the
following rules (where [] is the empty list and a¤ l is the list l prepended with
a):

α : len([]) → 0
β : len(a¤ l) → 1 + len(l)

Given the above transformation, we obtain the following set of rules. Note that
we have annotated the name of the rules as well with the effect that they have
on the annotation of len.

α : len([]) → 0

α1 : len1([]) → 0

β→1 : len(a¤ l) → 1 + len1(l)

β1→1 : len1(a¤ l) → 1 + len1(l)
1→ : len1(l) → len(l)

Note that in practice it might not be feasible to use φ(R) instead of TRS R
because of the exponential increase in size. However, it is often sufficient to limit
the annotations to, say, 3 arguments.

6 Evaluation

We evaluate the implementations of our mCRL2 rewriters by looking at some
benchmarks. These are divided into two parts, viz. benchmarks for rewriting a
single closed term and benchmarks for generating labelled transition systems.
The reason for this division is that LTS generation, at least as it is implemented
in µCRL and mCRL2, uses rewriters in a very specific way.

6.1 LTS generation

The µCRL and mCRL2 toolsets first convert the specification to a symbolic LTS,
which consists of a list of guarded transitions and the effect on the state these
have. Such a guard is an open term that indicates under which valuation of the
variables a transition can happen. To generate all such valuations we use a form
of narrowing [5]; we repeatedly do case distinction on a variable and rewrite the
guard to see if it evaluates to true or false.

As only a small change is made in each step, most of the time the rewriter
will be busy reestablishing that large parts of the guard are still in normal form.
Optimisations that avoid normal form rewriting are actually less effective in this
setting, as they always need to traverse a term at least once to establish that it
is a normal form.



60 Muck van Weerdenburg

For the LTS benchmarks we have taken four specifications (chatboxt, 1394-
fin, ccp33 and commprot) from the µCRL toolset, converted them to symbolic
LTSs that are easily translatable to LOTOS [8] (for the CADP toolset [6]) and
mCRL2. The used specifications differ slightly from the versions in the µCRL
toolset to be able to translate to CADP. Note that, unlike the µCRL and mCRL2
toolsets, CADP is not specialised in handling these symbolic LTSs, which can
negatively influence their results. All tools were used on the same machine with
2 gigabytes of memory (of which the tools were only allowed to use 1.5 gigabytes
to avoid swapping). Note that we write OoM (out of memory) in case a tool was
terminated because it needed more than the allowed amount of memory. For this
reason we included additional variants of benchmarks limited to an amount of
states that all tools could handle.

Table 1. LTS generation benchmarks

# states CADP µCRL mCRL2
Innermost JITty

chatboxt 65536 1.3s 5.0s 4.0s 3.5s

1394-fin 400 65.3s 0.1s 0.5s 0.4s

1394-fin 371804 OoM 103.8s 212.1s 92.3s

ccp33 7000 25.5s 27.6s 61.8s 8.7s

ccp33 20000 OoM 79.0s 171.9s 26.2s

commprot 700 53.9s 11.0s 12.4s 13.0s

commprot 5000 OoM 77.8s 92.1s 93.0s

Looking at Table 1, we see that our JITty implementation performs better
on average than any of the others. The exact difference depends highly on the
chosen example, as some depend more heavily on functions that allow for JITty
techniques. In the CADP column we see several OoMs indicating the tool needed
more than the allowed amount of memory.

Our innermost implementation is about two times as slow as µCRL in the,
calculational-wise, heavier cases. This could be either because µCRL also applies
JITty-like techniques in a limited fashion or because their implementation does
not need to deal with applicative terms. The implementation is otherwise very
similar. Given the times in Table 1 it is clear that only in case there is a significant
difference in execution time between the mCRL2 implementations there is also
a significant difference with µCRL. This seems to support the idea that our
innermost rewriter is slower than µCRL because the latter also applies some
JITty techniques.

6.2 Closed term rewriting

To investigate the performance of our rewriters in a more general setting we
look at the benchmarks in Table 2. These benchmarks consist of only a single
closed data term that needs to be rewritten to normal form. In order to test



An Account of Implementing Applicative Term Rewriting 61

the rewriters of the LTS generation tools we again use µCRL specifications as
before, only with a single process that can do precisely one transition which has
the term to be rewritten as an argument (such that these tools are effectively only
rewriting). In addition to the LTS generation tools we also consider the functional
language tools Maude [4], Glasgow Haskell Compiler (GHC) [9], Clean [13] and
ASF+SDF. For these tools the process part of the specification is discarded in
the conversion.

The benchmarks we use are a naive Fibonacci implementation (fib(32)),
benchmarks as used in [11] (evalexp, evalsym, evaltree) and a binary search
(b.search). Fibonacci and evalsym are mainly calculational benchmarks, eval-
expr differentiates eager and lazy implementations and evaltree is a memory
extensive benchmark. The binary search is a benchmark that takes an increas-
ing function, a value and a bound and searches that function (in the domain
determined by the bound) for the given value. This benchmark is mainly a test
for applicative terms (as the search function takes a function as argument), but
also requires a lazy implementation for reasonable execution. The function we
use as argument is the Fibonacci function. We write NA (not applicable) in
Table 2 for tools that do not support applicative terms.

Table 2. Closed term rewriting benchmarks

Maude GHC Clean ASF+SDF CADP µCRL mCRL2
Innermost JITty

fib(32) 23.4s 4.0s 2.6s 2.7s 2.4s 2.3s 4.0s 11.2s

evalexpr 3.3s 0.4s 0.3s OoM 0.5s OoM OoM 5.4s

evalsym 231.3s 18.7s 15.8s 36.3s OoM 19.0s 49.3s 254.2s

evaltree 16.7s OoM 2.1s 1.6s 0.6s 1.0s 1.9s 25.6s

b.search NA 4.5s 2.5s NA NA NA OoM 10.8s

From the benchmarks in Table 2 we can see that in general the rewriters of
the LTS generators can compete with the fastest rewriters for functional lan-
guages available, which seems to indicate that supporting open term rewriting
and implicit substitution is not a bottleneck. We can also see that our JITty
implementation is often significantly slower than the others and is more com-
parable to Maude, which uses an interpreting rewriter. This is likely due to
the fact that JITty always has to build the result of rule application before
rewriting that term, which is very expensive in our implementation. The mem-
ory extensive evaltree benchmarks, where JITty is about twelve times slower
than our innermost rewriter, seems to support this. Also note that the evalsym
benchmark, meant to test pure calculation speed, favors those that use a lazy
implementation (ASF+SDF and the mCRL2 innermost rewriter are the only
strict innermost rewriters).



62 Muck van Weerdenburg

7 Conclusion

We have described the implementation of the rewriters of the mCRL2 toolset.
The implementation of the innermost rewriter is very similar to the implemen-
tation of the µCRL rewriter and the rewriter used in ASF+SDF. The second
implementation is that of a compiling JITty rewriter, which is, as far as we know,
the first of its kind.

Benchmarks are given to illustrate the improvement this JITty rewriter is
over the innermost rewriters used for LTS generation. For closed term rewriting
we have shown that our innermost rewriter can compete with the best rewriters
currently available (ignoring the effects of lazy rewriting) and that JITty is a
bit slower. The latter is likely due to the fact that in this implementation more
intermediate terms have to be constructed, which is quite expensive.

The fact that the rewriters used for LTS generation can clearly compete with
the fastest rewriters for functional languages seems to suggest that adapting the
latter to support open term rewriting (which is essential for LTS generation)
should not be a problem. That is, unless these functional languages support
additional features with respect to the more basic languages used in process
specifications that are fundamentally in conflict with efficient open term rewrit-
ing. In any case, such an adaptation would allow developers and users of tools
centered around process behaviour and theorem proving (and most likely other
fields as well) to have direct access to the functionality offered by the expertise
of the functional programming community.

Most significant future work will be the improvement of the JITty rewriter
for closed term rewriting and especially the study of the implications of the
restrictions we have put on higher-order rewriting.

References

1. Augustsson, L.: Compiling pattern matching. In Jouannaud, J.P., ed.: Proceedings
of a Conference on Functional Programming Languages and Computer Architec-
ture (FPCA). Volume 523 of Lecture Notes in Computer Science., Springer-Verlag
(1985) 368–381

2. Baxter, L.D.: The complexity of unification. PhD thesis, University of Waterloo
(1976)

3. Blom, S.C.C., Fokkink, W.J., Groote, J.F., van Langevelde, I., Lisser, B., van de
Pol, J.C.: µCRL: A toolset for analysing algebraic specifications. In Berry, G.,
Comon, H., Finkel, A., eds.: Computer Aided Verification: 13th International Con-
ference, CAV 2001, Paris, France, July 18-22, 2001, Proceedings. Volume 2102 of
Lecture Notes in Computer Science., Springer-Verlag (2001) 250–254

4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Que-
sada, J.F.: Maude: specification and programming in rewriting logic. Theoretical
Computer Science 285(2) (2002) 187–243

5. Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics (B). MIT Press (1990)
243–320



An Account of Implementing Applicative Term Rewriting 63

6. Garavel, H., Lang, F., Mateescu, R.: An overview of CADP 2001. European
Association for Software Science and Technology (EASST) Newsletter 4 (2002)

7. Groote, J.F., Mathijssen, A.H.J., van Weerdenburg, M.J., Usenko, Y.S.: From
µCRL to mCRL2: Motivation and outline. In Aceto, L., Gordon, A.D., eds.: Proc.
Workshop Algebraic Process Calculi: The First Twenty Five Years and Beyond.
Number NS-05-3 in BRICS Notes Series (2005) 126–131

8. ISO: ISO 8807: Information processing systems – open systems interconnection
– LOTOS – a formal description technique based on the temporal ordering of
observational behaviour. Standard, International Standards Organization, Geneva,
Switzerland (1987) First edition.

9. Launchbury, J., Sansom, P.M., eds.: The Glasgow Haskell Compiler: A Retrospec-
tive. In Launchbury, J., Sansom, P.M., eds.: Functional Programming, Glasgow
1992, Proceedings of the 1992 Glasgow Workshop on Functional Programming,
Ayr, Scotland, 6-8 July 1992. Workshops in Computing, Springer (1993)

10. Mathijssen, A.H.J., Pretorius, A.J.: Specification, analysis and verification of an
automated parking garage. Technical Report 05/25, Eindhoven University of Tech-
nology, ISSN 0926-4515 (2005)

11. Olivier, P.: A Framework for Debugging Heterogeneous Applications. PhD thesis,
University of Amsterdam (2000)

12. Peyton Jones, S.L.: The implementation of functional programming languages.
Prentice-Hall (1987)

13. Plasmeijer, M.J.: Clean: a programming environment based on term graph rewrit-
ing. Electronic Notes in Theoretical Computer Science 2 (1995) 215–221

14. Schnoebelen, P.: Refined compilation of pattern-matching for functional languages.
Science of Computer Programming 11(2) (1988) 133–159

15. van de Pol, J.: Just-in-time: On strategy annotations. In Gramlich, B., Lucas, S.,
eds.: WRS 2001, 1st International Workshop on Reduction Strategies in Rewriting
and Programming. Volume 57 of Electronic Notes in Theoretical Computer Science.
(2001) 41–63

16. van de Pol, J.C.: JITty: a rewriter with strategy annotations. In Tison, S., ed.:
Rewriting Techniques and Applications : 13th International Conference, RTA 2002,
Copenhagen, Denmark, July 22-24, 2002. Proceedings. Volume 2378 of Lecture
Notes in Computer Science., Springer-Verlag (2002) 367–370

17. van den Brand, M., van Deursen, A., Heering, J., de Jong, H.A., de Jonge, M.,
Kuipers, T., Klint, P., Moonen, L., Olivier, P.A., Scheerder, J., Vinju, J.J., Visser,
E., Visser, J.: The asf+sdf meta-environment: A component-based language devel-
opment environment. In Wilhelm, R., ed.: Compiler Construction: 10th Interna-
tional Conference, CC 2001. Volume 2027 of Lecture Notes of Computer Science.,
Springer (2001) 365–370

18. van den Brand, M.G.J., Heering, J., Klint, P., Olivier, P.A.: Compiling language
definitions: the ASF+SDF compiler. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 24(4) (2002) 334–368

19. van den Brand, M.G.T., de Jong, H.A., Klint, P., Olivier, P.A.: Efficient annotated
terms. Software: Practice & Experience 30(3) (2000) 259–291

20. Vittek, M.: A compiler for nondeterministic term rewriting systems. In: Rewrit-
ing Techniques and Applications, 7th International Conference, RTA-96, New
Brunswick, NJ, USA, July 27-30, 1996, Proceedings. Volume 1103 of Lecture Notes
in Computer Science., Springer (1996) 154–167



Using Maude and its strategies for defining a

framework for analyzing Eden semantics?

Sixth Int’l Workshop on Reduction Strategies in Rewriting and Programming (WRS’06)
S. Antoy (ed.), Seattle, Washington, August 11, 2006
Portland State University, Tech. Report 06-04, pages 64-79

Mercedes Hidalgo-Herrero1, Alberto Verdejo2, and Yolanda Ortega-Mallén2

1 Departamento de Didáctica de las Matemáticas
2 Departamento de Sistemas Informáticos, Universidad Complutense de Madrid

Abstract. Eden is a parallel extension of the functional language Haskell.
On behalf of parallelism Eden overrides Haskell’s pure lazy approach,
combining a non-strict functional application with eager process creation
and eager communication. We desire to investigate alternative semantics
for Eden in order to analyze the consequences of some of the decisions
adopted during the language design. In this paper we show how to im-
plement in Maude the operational semantics of Eden in such a way that
semantic rules can be modified easily. Moreover, other semantic features
can be implemented by means of parameterized modules that allow to
instantiate in different ways several parameters of the semantics but
without modifying the semantic rules.

Keywords: Operational semantics, parallel functional languages, Eden,
rewriting logic, Maude, rewrite strategies.

1 Introduction

It is well-known that functional languages offer great possibilities for parallel
programming, ranging from a completely implicit parallelism —for instance an
automatic parallelization— to an explicit parallelism where the programmer dis-
tributes the computation among a set of communicating processes that even may
be located by the programmer himself at designated processors. The parallel lan-
guage Eden lies more closely to this latter approach, extending Haskell [11] with
coordination features for creating processes with stream-based communication.

Haskell is a lazy language, i.e. it adopts normal order evaluation, avoiding
repeated computations by sharing reductions. The lazy approach restricts the
exploitation of parallelism because expressions are evaluated only under demand.
Therefore, Eden overrides the pure lazy approach, combining a non-strict func-
tional application with eager process creation and eager evaluation of commu-
nication values. This may produce speculative computation, i.e. the calculation
of results that may never be used. The amount of speculative computation pro-
duced during the evaluation of an Eden program is variable, depending on the
number of processors, the speed of basic operations, etc. This interplay between

? Research supported by MCyT Spanish project MIDAS (TIC200301000).



Using Maude and its strategies for analyzing Eden semantics 65

laziness and eagerness is precisely established by Eden’s operational semantics
[5,7]. Moreover, this semantics defines two extreme degrees of speculative com-
putation: minimal and maximal.

We desire to investigate alternative semantics for Eden in order to analyze the
consequences of some of the decisions adopted during the language design. For
this purpose, it is extremely useful to have a framework where Eden’s operational
semantics can be easily programmed and that provides mechanisms to reflect
with small effort changes in the semantics. Rewriting logic [10] and Maude [3]
are excellent candidates for this aim. First, Eden’s syntax can be represented
literally. Second, Eden’s operational semantics rules can be represented in Maude
quite literally in most cases, so keeping the representation distance as short as
possible. Third, since Maude specifications are executable, we directly get an
implementation of Eden where program examples can be executed and analyzed.
Finally, a recently proposed strategy language [9] for Maude can be used to
control in every desired way the application of semantic rules.

In this paper we show how to implement in Maude the operational semantics
of Eden in such a way that two main objectives are possible: (1) the semantic
rules can be modified in an easy manner so that in a near future we can inves-
tigate with different possibilities, and (2) several measures —parallelism, spec-
ulative computation, communications, etc.— can be taken by changing some
parameters of the semantics (which is defined in a parameterized module) with-
out modifying the semantic rules.

From the point of view of Eden, this is the first step towards a framework
where Eden expressions can be evaluated according to different semantics in or-
der to be compared and analyzed. From the point of view of the implementation
of operational semantics in Maude, this work constitutes another step in a con-
tinued effort to represent semantics for more complex languages. The simplest
concurrent language we have considered is Milner’s CCS in [13], that does not
require any strategies. This is not the case with Cardelli and Gordon’s Ambi-
ent Calculus that we have tackled in [12]. However, the use of strategies in the
latter solves problems different from the ones we consider in this paper, where
we take into account that Eden’s semantics inherently depends upon an order
of application of the rules, thus exploiting the strategy language expressiveness.

The rest of the paper is organized as follows. First we present a brief intro-
duction to Maude; for a complete treatment we refer the reader to the Maude
manual [3]. Section 3 gives an overview of Eden and implements its kernel syntax,
while Section 4 is devoted to the operational semantics and its implementation
in Maude. In Section 5 we extend our framework in order to be able to obtain
measures from the computations. The last section presents our conclusions and
outlines future work.

2 Visiting Maude

In Maude the state of a system is formally specified as an algebraic data type
by means of an equational specification. Maude uses a very expressive version of



66 M. Hidalgo-Herrero, A. Verdejo, Y. Ortega-Mallén

equational logic, namely membership equational logic [2]. In this kind of speci-
fications we can define new types (by means of the keyword sort(s)); subtype
relations between types (subsort); operators (op) for building values of these
types, giving the types of their arguments and result, and which may have at-
tributes as being associative (assoc) or commutative (comm), for example; equa-
tions (eq) that identify terms built with these operators; and memberships (mb)
t : s stating that the term t has sort s. Both equations and memberships can be
conditional. Conditions are formed by a conjunction (written /\) of equations
and memberships. Equations are assumed to be confluent and terminating, that
is, we can use the equations from left to right to reduce a term t to a unique
(modulo the operator attributes as associativity, commutativity, and identity)
canonical form t′ that is equivalent to t, i.e. they represent the same value.

The dynamic behavior of a system is specified by rewrite rules of the form

t −→ t′ if (
∧

i

ui = vi) ∧ (
∧

j

wj : sj) ∧ (
∧

k

pk −→ qk)

that describe the local, concurrent transitions of the system. That is, when part
of a system matches the pattern t and the conditions are fulfilled, it can be
transformed into the corresponding instance of the pattern t′.

Maude modules can be parameterized with one or more parameters, each
of which is expressed by means of one theory that defines the interface of the
module, that is, the structure and properties required of an actual parameter.

Rewrite rules need be neither confluent nor terminating. This theoretical
generality requires some control when the specifications become executable, be-
cause it must be ensured that the rewriting process does not go in undesired
directions. We have defined a strategy language for Maude that can be used to
control how rules are applied to rewrite a term [9]. The simplest strategies are
the constants idle, which always succeeds by doing nothing, and fail, which
always fails. The basic strategies consist of the application of a rule (identified
by the corresponding rule label) to a given term, and with the possibility of pro-
viding a substitution for the variables in the rule. In this case a rule is applied
anywhere in the term where it matches satisfying its condition. When the rule
being applied is a conditional rule with rewrites in the conditions, the strategy
language allows to control by means of search expressions how the rewrite con-
ditions are solved. An operation top to restrict the application of a rule just
to the top of the term is also provided. Basic strategies are then combined so
that strategies are applied to execution paths. Some strategy combinators are
the typical regular expression constructions: concatenation (;), union (|), and
iteration (* for 0 or more iterations, + for 1 or more, and ! for a “repeat until
the end” iteration). Another strategy combinator is a typical if-then-else, but
generalized so that the first argument is also a strategy. The language provides a
(x)matchrew combinator that allows a term to be split in subterms, and specifies
how these subterms have to be rewritten.



Using Maude and its strategies for analyzing Eden semantics 67

3 A quick excursion to Eden

Eden [7] extends the non-strict functional language Haskell with a set of coordi-

nation features to control parallel evaluation of processes. Coordination in Eden
is based on two principal concepts: explicit definition of processes and implicit

stream-based communication, i.e. there are not communication primitives such
as send and receive. As well as there is a distinction between function defini-
tion and function application, Eden includes process abstractions, i.e. abstract
schemes for process behavior, and process instantiations for the actual creation of
processes. Moreover, nondeterminism is introduced in Eden by means of a prede-
fined process abstraction which is used to instantiate nondeterministic processes
that fairly merge several input streams into a single output stream.

For the purpose of this paper we just concentrate on Eden’s essentials, which
are captured by the untyped λ-calculus whose abstract syntax is given next,
where x ∈ Var represents identifiers and E ∈ Exp represents expressions:

E ::= x identifier
| λx.E λ-abstraction
| E1E2 application
| E1#E2 process creation
| let {xi = Ei}

n
i=1 in E local declaration

When evaluating the expression E1#E2 inside a process p, a new child process
q is created together with two communication channels. The child is fed with the
value of E2 via the input channel by its parent process p. Process q evaluates
E1 E2 and returns the result (to its parent) via the output channel.

The language is normalized to a restricted syntax where all subexpressions,
except for the body of λ-abstractions, are replaced by variables defined in let-
expressions. This guarantees that subexpressions are shared, and are evaluated
at most once. We also assume a general renaming of variables for avoiding name
clashes during expression evaluation.

For instance, the evaluation of the following expression

let x0 = x1#x1, x1 = \x.x, x2 = 1, x3 = x4 x0, x4 = x5 x2, x5 = \y.(\z.z) in x3

gives place to a process creation: the main process evaluates x3 while the child
computes the application x1 x1. In order to do that, the child process needs the
value of x1 twice:

1. for obtaining the λ-abstraction: the definition is copied to the child’s heap,
and

2. for getting the argument: the parent communicates the value to the child.

By the end of the evaluation of the application, the resulting value is sent back
to the parent process.



68 M. Hidalgo-Herrero, A. Verdejo, Y. Ortega-Mallén

3.1 Representation in Maude

We define in Maude the syntax of the kernel of Eden given above. We use sorts
and subsorts to represent the different syntactic categories and their relations.
Having different sorts allows us to concrete the patterns used in rewrite rules by
using (Maude) variables of the most appropriate sort. We have sorts for ordinary
variables (Std), for channels (Cha) and for the union of both sets (Var). We also
use two sorts for distinguishing between expressions that are in weak head normal
form (Whnf) and those that are not (NonWhnf). Both are Eden expressions (Exp).

sorts Std Cha Var Whnf NonWhnf Exp .

subsorts Std Cha < Var < NonWhnf .

subsorts Whnf NonWhnf < Exp .

We define constructors for building expressions. For each constructor, the
most concrete sort is used as the result sort; for example, a λ-expression \_._

is a weak head normal form, whereas an application __ (empty syntax) is not.
Strings are used as variable identifiers.

op s : String -> Std . op c : String -> Cha .

op \_._ : Std Exp -> Whnf . op __ : Exp Exp -> NonWhnf .

op let_in_ : LetBinds Exp -> NonWhnf . op _#_ : Exp Exp -> NonWhnf .

4 Operational semantics

In this section we describe an operational semantics in the style of [1]. It is our
purpose just to describe the structure of the semantics and to present some of
the transition rules focusing on how they have been implemented in Maude, but
neither to explain nor to justify their definition. For a more detailed overview of
Eden’s semantics, the reader is referred to [7]; a version extended with streams
for communication, dynamic channels and nondeterminism can be found in [5].
Correctness proofs, examples and applications are gathered in [4].

4.1 A two-level transition system

A process is represented by a pair 〈p,H〉, where p is a process identifier and
H is the heap collecting the variable-to-expression bindings that model the clo-
sures corresponding to the process evaluation state. Each binding is considered a
potential thread to be executed by the available processors, so that a label indi-
cates the thread state: x

α
7→ E, where α ::= I|A|B corresponds to Inactive (either

not yet demanded or already completely evaluated), Active (or demanded), and
Blocked (demanded but waiting for the value of another binding), respectively.
Channel identifiers can appear on either side of a binding: on the left-hand side
they represent outports; while on the right-hand side they denote inports.

In the following, we will use x, y, z ∈ Std for ordinary variables, c ∈ Chan for
channels, θ ∈ Var = Std ∪ Chan, and p and q for process identifiers.



Using Maude and its strategies for analyzing Eden semantics 69

The model of evaluation is represented by a sequence of systems —a sys-
tem is a set of parallel processes— regulated by the transition rules. Some of
the bindings in a heap are executed in parallel, sharing the data of the corre-
sponding process; but bindings in different processes can only share information
through process communication. The semantics needs small-step transitions to
model parallelism in a synchronous way, in the sense that single reductions are
local and independently carried out at each process and then combined before
proceeding to the next step. The semantics reflects the distinction between the
two sub-languages (computation and coordination) that configure Eden, so that
it consists of a two-level transition system: the lower level handles local effects
within processes, while the upper level describes the effects global to the whole
system, like process creation and data communication.

4.2 Representing the transition system in Maude

A thread is built with a variable, a thread state (of sort TState), and an expres-
sion. A heap is a set of threads: none represents the empty heap, a thread rep-
resents a singleton heap, subsort Thread < Heap, and the union _+_ of heaps
builds them. The union constructor is declared to be associative, commutative,
and with the empty heap as the identity element; pattern matching will take
place modulo these properties. Finally, the process constructor has four argu-
ments: a string corresponding to the process identifier; a heap; and two counters:
one represents the number of children of this process and the other indicates the
maximum number used to build new variables (incremented when renamings
are needed because of the generation of new variables). There is also a union
operator __ (with empty syntax) for building systems.

sorts TState Thread Heap Process System .

subsort Thread < Heap .

subsort Process < System .

ops A I B : -> TState .

op _|-_->_ : Var TState Exp -> Thread .

op none : -> Heap .

op _+_ : Heap Heap -> Heap [assoc comm id: none] .

op <_,_,_,_> : String Heap Nat Nat -> Process .

op empty : -> System .

op __ : System System -> System [assoc comm id: empty] .

We have defined several auxiliary operations needed by the semantics: sub-
stitution, renaming of variables in a heap, normalization, etc. They are defined
structurally by means of equations and using the owise (otherwise) Maude at-
tribute. For the complete Maude code we refer the reader to [6].

4.3 Local process evolution

Local transitions express the reduction of an active thread in the context of a sin-
gle process. This internal activity affects only the corresponding heap. The eval-
uation of an expression terminates when it reaches a whnf value (W ∈ Whnf ).



70 M. Hidalgo-Herrero, A. Verdejo, Y. Ortega-Mallén

H + {x
I
7→ W } : θ

A
7→ x −→ H + {x

I
7→ W , θ

A
7→ W } (value)

if E /∈ Whnf , H + {x
IAB
7−→ E} : θ

A
7→ x −→ H + {x

AAB
7−→ E, θ

B
7→ x} (demand)

H : x
A
7→ x −→ H + {x

B
7→ x} (blackhole)

if E /∈ Whnf , H + {x
IAB
7−→ E} : θ

A
7→ x y −→ H + {x

AAB
7−→ E, θ

B
7→ x y} (app-demand)

H + {x
I
7→ λz.E} : θ

A
7→ x y −→ H + {x

I
7→ λz.E, θ

A
7→ E[y/z]} (β-reduction)

H : θ
A
7→ let {xi = Ei} in x −→ H + {yi

I
7→ Eiσ}

n
i=1 + {θ

A
7→ σ(x)} (let)

where fresh(yi) (1 ≤ i ≤ n) and σ := [y1/x1, . . . , yn/xn]

Fig. 1. Local transition rules

Local transitions take the form H : θ
A
7→ E −→ H ′, which is read as “the evalu-

ation of the active thread θ
A
7→ E transforms the heap H + {θ

A
7→ E} into H ′”.

In Figure 1 we show the local rules expressing how lazy evaluation progresses
under demand. We avoid writing multiple similar transition rules by allowing a
binding to appear with several labels, corresponding to the different possibilities

admitted by the rule. Thus, x
IAB
7−→ E on the left-hand side of rule (demand),

and x
AAB
7−→ E on the right-hand side means that the thread corresponding to the

closure x 7→ E becomes active in the case it was inactive, and remains active or
blocked otherwise.

In Maude we represent the semantic rules as rewrite rules. There are several
ways of mapping inference systems into rewriting logic [8]. In the structural
operational semantics case, judgements typically have the form of some kind
of transition P → Q between states, so that it makes sense to map directly
this transition relation between states to a rewriting relation between terms
representing the states. Thus, an inference rule of the form

P1 → Q1 . . . Pn → Qn

P0 → Q0

becomes a conditional rewrite rule of the form

P0 −→ Q0 if P1 −→ Q1 ∧ . . . ∧ Pn −→ Qn.

In this way the semantic rules become (conditional) rewrite rules: the transition
in the conclusion becomes the main rewrite of the rule, and the transitions in
the premises become rewrite conditions [13].

The local transition rules (as those given in Figure 1) are translated quite
literally. We introduce two new constructors for representing heaps. The first one,
_:_, is already used in the semantic rules in order to separate the leading thread
—that which is going to evolve— from the rest of the heap. The second one, _&_,



Using Maude and its strategies for analyzing Eden semantics 71

is used in the right-hand side of rewrite rules in order to separate the modified
threads from the unmodified ones because this separation will be useful later.
Actually, the rule (demand) puts together three transition rules, one for each
possible state of the thread consulted in the heap. The rewrite rule demand given
below represents the three semantic rules at the same time, by using a variable T
of sort TState and auxiliary operations for detecting if the thread is modified or
not. Notice how the variable NW of sort NonWhnf is used to ensure the condition
E 6∈ Whnf in the semantic rule. The rule let also uses auxiliary operations to
build the new heap on the right. This rule rewrites a process instead of only a
heap because, due to the renaming, the fourth argument has to be incremented.

rl [value] : H + X |- I -> W : Theta |- A -> X

=> H + X |- I -> W & Theta |- A -> W .

rl [demand] : H + X |- T -> NW : Theta |- A -> X

=> H + nmd(X |- T -> NW) & md(X |- T -> NW) + Theta |- B -> X .

rl [blackhole] : H : X |- A -> X

=> H & X |- B -> X .

rl [app-demand] : H + X |- T -> NW : Theta |- A -> X Y

=> H + nmd(X |- T -> NW) & md(X |- T -> NW) + Theta |- B -> X Y .

rl [beta-reduction] : H + X |- I -> \ Z . E : Theta |- A -> X Y

=> H + X |- I -> \ Z . E & Theta |- A -> E [Y / Z] .

rl [let] : < p, H : Theta |- A -> let LBS in X, N, M >

=> < p, H & letBindsToHeap(Theta, LBS, X, newvars(p, M, numvars(LBS))),

N, M + numvars(LBS) > .

4.4 Local parallelism

Local evolutions —corresponding to the local transition rules— are considered
to occur simultaneously, entwined in a parallel step. The rule given in Figure 2
expresses the evolution of parallel threads inside a process, where ET (S) is the
set of active threads in the system S that are allowed to evolve. H (i,1) is the part
of H that remains unchanged during the application of the corresponding local
rule, while K(i,2) contains the bindings from H(i,2) that have been modified. It
is guaranteed that there is no interference among local transitions. There are
several possibilities for defining ET (S), depending on the number of available
processors, the allowed degree of speculative computation, the priority given to
some threads, etc. Maude modularity, by means of parameterized modules, is
very useful to implement and then compare different scheduling strategies, as
we will see in Section 4.6.

The rule (local parallel) is quite “abstract.” First, it has a variable amount
of premises, depending on the number of threads returned by ET (S); and second,
it makes separations of the heaps distinguishing between modified and unmod-
ified threads. For its implementation, we have solved the second problem by



72 M. Hidalgo-Herrero, A. Verdejo, Y. Ortega-Mallén

{

H(i,1) + H(i,2) : θi A
7→ Ei −→ H(i,1) + K(i,2)

s.t. H = H(i,1) + H(i,2) + {θi A
7→ Ei} and θi A

7→ Ei ∈ ET (S) ∩ H
}n

i=1

H
par
−→S (∩n

i=1H
(i,1)) ∪ (∪n

i=1K
(i,2))

where n = |ET (S) ∩ H|

Fig. 2. (local parallel) rule

modifying the right-hand side of local rules with the _&_ operator. To deal with
the first problem we have devised several approaches; we show here the one
which represents the resolution of premises, and the calculation of intersections
and unions in the right-hand side of the conclusion step by step, by means of
rewrite rules. We have chosen this form because it is similar to its mathematical
presentation, it simplifies the strategies needed, and it is more efficient.

We consider the following three rewrite rules as the basic steps of an algorithm
that implements the (local parallel) rule. The rule extend adds to the process
three arguments: the first one is the set of variables associated with threads that
have to evolve (new variable VS, explained below), the second represents the
(partial) evaluation of the intersection of unmodified threads (initially the whole
heap), and the third represents the (partial) evaluation of the union of modified
threads (initially the empty heap). The rule parallel-step performs the main
step of the algorithm, by solving one premise each time. It is a conditional
rewrite rule: the first two conditions (which are matching equations) extract
the thread corresponding to the variable Theta from the heap H, and the third
(rewrite) condition represents the premise in (local parallel) corresponding to
the variable Theta. This last condition has to be solved by using one of the local
transition rules. Notice that the heap H is kept unmodified because it is used in
the resolution of each premise, and the variable Theta is removed from the set
VS. Finally, the rule contract removes the extra arguments from a process, and
performs a final union of heaps.

rl [extend] : < p, H, N, M > => < p, H, VS, H, none, N, M > .

crl [parallel-step] : < p, H, Theta . VS, H’, K, N, M > =>

< p, H, VS, int(H’,H1), K + K1, N’, M’ >

if Theta |- T -> E := lookUp(Theta, H) /\ H1-2 := filter(Theta, H) /\

< p, H1-2 : Theta |- T -> E, N, M > => < p, H1 & K1, N’, M’ > .

rl [contract] : < p, H, mt, H’, K, N, M > => < p, H’ + K, N, M > .

The application of these three rules has to be controlled. First of all, the
rule extend is applied by providing the concrete value for variable VS, namely
the variables in ET (S) ∩ P , where P is the process being rewritten and S is
the whole system3; then, the rule parallel-step is applied as many times as
possible, i.e. once for each thread in ET (S) ∩ P ; and finally, the rule contract

3 This intersection is computed when the strategy -par-> is called from strategy
=par=> bellow.



Using Maude and its strategies for analyzing Eden semantics 73

has to be applied. The following strategy -par->, that receives as argument a set
of variables, corresponds to this concrete application of the rules. It represents

the relation
par
−→S in the semantics (defined in Figure 2).

sop -par-> : VarSet .

seq -par->(ActVS:VarSet) = extend[VS:VarSet <- ActVS:VarSet] ;

( parallel-step ! ) ; contract .

An alternative way of implementing the relation
par
−→S would put more control

in the strategy, making it to traverse the set of evolvable variables and applying
a local rule to each of these variables (by means of other strategies). Although in
this case the rule parallel-step would be simplified, the approach presented
before has proved to be more efficient by doing the rewrite rules more powerful,
and by simplifying the strategies.

4.5 Global system evolution

At an upper level we define global transitions between process systems repre-
sented by sets of processes. A global transition takes the general form:

S
¦

=⇒ {〈p,H ′
p〉}〈p,Hp〉∈S ∪ S′

where each heap Hp (associated to a process p in the system S) is transformed to
H ′

p, while new processes (in S ′) may be created. The diamond ¦ is a place-holder
for the name of the rule.

Parallel Now we consider the parallel evolution of processes within a system S:

(parallel)
{Hp

par
−→S H ′

p}〈p,Hp〉∈S

S
par
=⇒ {〈p, H ′

p〉}〈p,Hp〉∈S

This rule has a variable number of premises, one for each process in the system
S. Each premise makes the corresponding process to evolve exactly once through

the transition
par
−→S . We implement this rule by means of the strategy =par=>

that applies the strategy -par-> to each process in a system. This strategy is
recursive and it terminates when the rest of the system (represented by the
variable S:System below) is empty. The strategy =par=> receives as argument
the variables corresponding to the threads returned by the function ET applied
to the whole system. Strategy -par-> is called with the set of evolvable variables
of process P, calculated by function inters.

sop =par=> : VarSet .

seq =par=>(VS:VarSet) = if (match empty) then idle

else (matchrew P:Process S:System by

P:Process using -par->(inters(P:Process, VS:VarSet)),

S:System using =par=>(VS:VarSet) ) fi .



74 M. Hidalgo-Herrero, A. Verdejo, Y. Ortega-Mallén

(S, 〈p, H + {θ
α
7→ x#y}〉)

pc
−→ (S, 〈p, H + {θ

B
7→ c1, c2

A
7→ y}〉,

〈q, η(nh(x, H)) + {c1
A
7→ η(x) z, z

B
7→ c2}〉)

if nf(x, H + {θ
α
7→ x#y}) = ∅

q, z, c1, c2 are fresh identifiers and substitution η replaces all variables by fresh ones

Fig. 3. (process creation) rule

Multi-step rules After each process has internally evolved, the following tasks
have to be done at the system level: process creation, interprocess communication
and state management (thread unblocking and deactivation). In general, these
tasks imply multiple single steps, each involving at most two processes. Let S

be a process system, and ¦ the name of a rule (¦ 6= par), for each single-step

rule S
¦

−→ S′ we define a multi-step rule S
¦

=⇒ S′ satisfying: S
¦

−→
∗

S′ and,
there is no S′′ such that S′ ¦

−→ S′′. The application of a single-step rule ¦ to
some binding in some process may enable the application of the same rule ¦ to
other bindings —in the same or in other processes— but it can never disable
applications of rule ¦ which were enabled before the former application.

Single-step rules are implemented in Maude as rewrite rules, while the re-
lations

¦
=⇒ are built by means of strategies. Afterwards, these relations are

combined through more strategies.

Process creation The initial heap of a child process contains all the bindings
that are needed for the evaluation of the dependent variables in the process
body; these are copied from the parent to the child heap by the function nh

(needed heap): nh(x,H) collects all the bindings in H that are reachable from x.
A renaming η with fresh variables is applied to avoid name clashes. A process

creation (see
pc
−→ rule in Figure 3) is blocked if there is some dependency on

values that have to be communicated. The function nf (needed free) collects the
dependencies derived from the free variables.

Let us consider again the expression given as example in Section 3. After
the application of the (let) local rule, the resulting heap is the one shown in
the left-hand side of the following picture; and the (process creation) rule
generates the structure in the right-hand side:

main (N. Children: 0)

main
A
7→ x3

x0
I
7→ x1#x1

x1
I
7→ \x.x

x2
I
7→ 1

x3
I
7→ x4 x0

x4
I
7→ x5 x2

x5
I
7→ \y.(\z.z)

=⇒

main (N. Children: 1)

main
B
7→ x3

x0
B
7→ c1

x1
I
7→ \x.x

x2
I
7→ 1

x3
A
7→ x4 x0

x4
I
7→ x5 x2

x5
I
7→ \y.(\z.z)

c0
A
7→ x1

p
1

(N. Children: 0)

x6
B
7→ c0

x8
I
7→ \x7.x7

c1
A
7→ x8 x6



Using Maude and its strategies for analyzing Eden semantics 75

where c7 is the inport of the child whereas c8 is the outport; both of them are
internal variables that have not been defined by the programmer since commu-
nications in Eden are implicit.

The following rewriting rule implements in Maude the
pc
−→ rule. It uses aux-

iliary functions to rename the heap copied into the child, and to build new
variables and channels.

crl [pc] : < p, H + Theta |- T -> X # Y, N, M >

=> < p, H + Theta |- B -> c1 + c2 |- A -> Y,N + 1, M + 1 >

< q, H’ + c1 |- A -> (searchVar(X,VVL) Z) + Z |- B -> c2, 0, M’ >

if nf(X, H + Theta |- T -> X # Y) = none /\ q := childName(p, N) /\

c2 := c(newvar(p, M)) /\ c1 := c(newvar(q, 0)) /\

Z := s(newvar(q, 1)) /\ < H’,VVL,M’ > := renH(nh(X,H),q,2) .

When designing Eden there was great discussion about how to distribute
computation between a process and its children. In the one extreme the parent
would advance as much work as possible, so that every dependent variable of
the instantiation body should be bound to a whnf before creating the child
process. But this may lead to a poor parallelization, where a process has to do
too much computation before delegating work to a helping process. In the other
—we could say the “laziest”— extreme the parent would pass on all the work to
its offspring, so that for a normalized expression x#y, the argument y would be
evaluated by the parent, while the body x as well as the application, x y, would be
evaluated by the newborn child. This may lead to repeated calculations, because
certain subexpressions may get evaluated independently by several children of
the same parent. But this can be easily avoided by the programmer, by forcing
the evaluation in the parent of these common subexpressions. The latter option
has been adopted for Eden and its actual implementation, and this has been
reflected in the operational semantics presented in [7]. We can represent the
different approaches in our semantics just by modifying the equational definition
of the function nf. Each definition is specified in a different module that then is
used to instantiate the parameterized module defining the semantics, which has
as a parameter a theory requiring a function nf.

The relation
pc

=⇒ is implemented in Maude as the following strategy, that
iterates the application of the rule pc as many times as possible:

sop =pc=> .

seq =pc=> = pc ! .

Communication The rule for value communication can be easily understood
by looking at its implementation in Maude:

crl [com] :

< p, Hp + ch |- T -> W, N, M > < c, Hq + Theta |- B -> ch, N’, M’ >

=> < p, Hp, N, M > < c, Hq + H’ + Theta |- A -> (msubs(W’,VVL)),N’,N2 >

if nf(W, Hp) = none /\ < H’,VVL,N1 > := renH(nh(W, Hp),c,M’) /\

< W’,N2 > := renL(W,c,N’) .



76 M. Hidalgo-Herrero, A. Verdejo, Y. Ortega-Mallén

When communicating a value it is mandatory to copy —from the producer’s
heap to the consumer’s heap— all the bindings needed for the evaluation of the
dependent variables in the value. This copy can only take place if the value does
not depend on pending communications.

Scheduling Once all the enabled process creations and communications have
been done, the following tasks have to be achieved:

– Unblocking bindings depending on a variable bound to a whnf value mean-
while (wUnbl).

– Deactivating bindings to values in whnf (deact).
– Blocking process creations that could not be executed (bpc).
– Demanding bindings needed for pending process creations and/or commu-

nications (pcd and vComd).

The corresponding rules are given in [5,7] and they are easily readable in the
Maude implementation [6]. Their iteration and sequential composition produce

a new global rule
unbl
=⇒ =

wUnbl
=⇒ ;

deact
=⇒ ;

bpc
=⇒ ;

pcd
=⇒ ;

vComd
=⇒ that is combined with

the other two rules explained before to obtain the global transition
sys
=⇒ =

comm
=⇒

;
pc

=⇒ ;
unbl
=⇒. The following Maude strategies define both relations:

sop =unbl=> .

seq =unbl=> = =wUnbl=> ; =deact=> ; =bpc=> ; =pcd=> ; =vComd=> .

sop =sys=> .

seq =sys=> = =com=> ; =pc=> ; =unbl=> .

Transition system step Finally, each transition step of the system is defined

as =⇒ =
par
=⇒ ;

sys
=⇒ . In Maude, the following strategy allows to compute a

transition step. It will be applied to the whole system S that is being evolved,
and first it applies strategy =par=> by passing as argument the set of evolvable
threads returned by ET (S).

sop ==> .

seq ==> = (matchrew S:System by S:System using =par=>(ET(S:System))

) ; =sys=> .

4.6 Speculative parallelism

In any concrete implementation the evaluation of an Eden program may give
rise to different computations. The exact amount of speculative parallelism de-
pends on the number of available processors, the scheduler decisions and the
speed of basic instructions. Hence, the execution of a program may range from
reducing the speculation to the minimum —only what is effectively demanded is
computed— to expanding it to the maximum —every speculative computation
is carried out. While the former would be equivalent to executing the program
on a single processor with the scheduler giving priority to the demand originated
by the main thread, the latter would correspond to having an unlimited set of



Using Maude and its strategies for analyzing Eden semantics 77

processors for evaluating the output of every generated process. It is also possi-
ble to reflect in the semantics the distribution of a limited number of processors

among the active threads following different rules, for instance: randomly among
the threads, or fairly distributing the processors among the threads, or even giv-
ing priority to the demands of the main thread and distributing the rest of the
processors among the other threads.

Once again, the facilities and modularity of Maude allow us to produce an
implementation where to experiment different alternatives by selecting the ap-
propriate definition of the functions nf and ET. These functions can be defined
in different ways, thus obtaining different semantics for Eden. In the present
implementation we have put each definition in a different Maude module. By
instantiating the module defining the semantics rules with a module with a con-
crete definition of nf and a module with a concrete definition of ET, we obtain
a complete specification of Eden.

5 Computation measures

In this section we show how our framework can be extended in order to perform
measurements over the computations, such as work done, degree of parallelism,
amount of communications, and so on. Modularity, particularly the separation
between rules and strategies, is again an useful instrument because the necessary
changes do not imply to modify the already implemented semantic rules.

First of all, the term being rewritten is extended with the actual values of the
measures. One possible way to do that is by means of a set of attributes together
with their values. One of these attributes contains the Eden system (Sys), that
will be rewritten by the semantics rules shown in the previous sections. Here we
show some examples of attributes.

sorts Attr AttrSet .

subsorts Attr < AttrSet .

op nilAS : -> AttrSet .

op __ : AttrSet AttrSet -> AttrSet [assoc comm id: nilAS] .

op Sys : System -> Attr .

op Work : Nat -> Attr . --- Number of evolved active threads

op NumProc : Nat -> Attr . --- Number of processes

op MaxPar : Nat -> Attr . --- Maximum thread parallelism

op AvPar : Nat -> Attr . --- Average thread parallelism

op AvProcPar : Nat -> Attr . --- Average process parallelism

Then, rewrite rules have to be defined to describe the modification of these
measures. For example, the following rule addPC increments by one the number
of processes, and the rule addET increments by a varying amount CardET (a new
variable in the right-hand side that will be instantiated by a strategy) the done
work and updates the maximal thread parallelism.

rl [addPC] : NumProc(N) => NumProc(N + 1) .

rl [addET] : MaxPar(Max) Work(W) =>

MaxPar(max(Max, CardET)) Work(W + CardET) .



78 M. Hidalgo-Herrero, A. Verdejo, Y. Ortega-Mallén

And finally, we need to modify the strategies in order to apply these rules to-
gether with the semantics rules. We show below two of these new modified strate-
gies. Strategy =pc=> now applies rule addPC after applying rule pc (process cre-
ation). And strategy ==> updates the values of measures MaxPar and Work using
the number of evolvable threads computed by expression size(ET(S:System)).

seq =pc=> = (pc ; addPC) ! .

seq ==> = (xmatchrew Sys(S:System) MaxPar(Max:Nat) Work(W:Nat)

by S:System using =par=>(ET(S:System)) ,

MaxPar(Max:Nat) Work(W:Nat) using

addET[CardET <- size(ET(S:System))]

) ; =sys=> .

We consider once again the example of Section 3. We have instantiated the
semantics with two different definitions of function ET corresponding to the min-

imal semantics (the final configuration is the first one where the main variable
becomes inactive), and the maximal semantics (the execution continues until
there is no more active thread in the system). The results are shown in the
following table.

Minimal Maximal

Execution time/global steps 12 7

Total work done 12 10

Average thread parallelism 1 1.43

Maximal thread parallelism 1 3

Average process parallelism 1.92 1.87

Speed 1.71

Now we have to look for representative examples that exploit the differences
between the semantics, and study other alternative definitions of function ET;
thus, obtaining conclusions of the measurements.

6 Conclusions and future work

The conjugation of Eden operational semantics and Maude has proved to be
fruitful because the characteristics of the latter meet Eden semantics implemen-
tation needs very faithfully. For instance, Maude rewrite rules mechanism has
been an excellent tool for implementing the reduction steps in Eden semantics.

Furthermore, Maude modularity has helped to implement different language
design decisions, or the scheduler options, which depend on the threads that are
allowed to evolve at each step. We have been able to implement a prototype tool
where the user can play with different parameters of the semantics.

Moreover, Maude high level of abstraction has allowed us to obtain an im-
plementation of the rules very similar to the operational rules. Consequently,



Using Maude and its strategies for analyzing Eden semantics 79

the code is exceptionally readable, in fact, its reading is almost equal to reading
the original semantics. Maude not only has been useful in the semantic aspects,
but also at the syntactical level: thanks to Maude operators we have defined the
syntax in a very direct way. Besides, the existence of subsorts has facilitated the
expression classification into variables, weak head normal forms, and so on.

Once this implementation is stable, this versatile interpreter is to be used
for analyzing computations obtained by using different language design options.
These analysis will be based on the measures mentioned above and on the com-
putations themselves. The comparisons will focus on the efficiency, the duplica-
tion of work, the amount of speculation, the termination of computations, etc.
Afterwards, the language will be extended with other features of Eden such as
communication via streams, and nondeterminism.

References

1. C. Baker-Finch, D. King, and P. Trinder. An operational semantics for paral-
lel lazy evaluation. In ACM-SIGPLAN International Conference on Functional
Programming (ICFP’00), pp. 162–173, 2000.

2. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in mem-
bership equational logic. Theoretical Computer Science, 236:35–132, 2000.

3. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. Maude Manual (Version 2.2), 2005. http://maude.cs.uiuc.edu/manual.

4. M. Hidalgo-Herrero. Semánticas formales para un lenguaje funcional paralelo. PhD
thesis, Universidad Complutense de Madrid, 2004.

5. M. Hidalgo-Herrero and Y. Ortega-Mallén. An operational semantics for the par-
allel language Eden. Parallel Processing Letters, 12(2):211–228, 2002.

6. M. Hidalgo-Herrero, A. Verdejo, and Y. Ortega-Mallén. Looking for Eden through
Maude and its strategies. Web page http://maude.sip.ucm.es/eden, 2006.

7. R. Loogen, Y. Ortega-Mallén, and R. Peña-Maŕı. Parallel functional programming
in Eden. Journal of Functional Programming, 15(3):431–445, 2005.

8. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic frame-
work. In D. M. Gabbay and F. Guenthner, eds., Handbook of Philosophical Logic,
Second Edition, Volume 9, pp. 1–87. Kluwer, 2002.

9. N. Mart́ı-Oliet, J. Meseguer, and A. Verdejo. Towards a strategy language for
Maude. In N. Mart́ı-Oliet, ed., Proc. Fifth Int. Workshop on Rewriting Logic and
its Applications, WRLA 2004, ENTCS 117, pp. 417–441. Elsevier, 2004.

10. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96(1):73–155, 1992.

11. S. Peyton Jones. Haskell 98 language and libraries: the Revised Report. Cambridge
University Press, 2003.

12. F. Rosa-Velardo, C. Segura, and A. Verdejo. Typed mobile ambients in Maude.
In H. Cirstea and N. Mart́ı-Oliet, eds., Proc. 6th Int. Workshop on Rule-Based
Programming, RULE 2005, ENTCS 147, pp. 135–161. Elsevier, 2006.

13. A. Verdejo and N. Mart́ı-Oliet. Implementing CCS in Maude 2. In F. Gadducci
and U. Montanari, eds., Proc. Fourth Int. Workshop on Rewriting Logic and its
Applications, WRLA 2002, ENTCS 71, pp. 239–257. Elsevier, 2002.



New Evaluation Strategies for Functional

Languages ?

Sixth Int’l Workshop on Reduction Strategies in Rewriting and Programming (WRS’06)
S. Antoy (ed.), Seattle, Washington, August 11, 2006
Portland State University, Tech. Report 06-04, pages 80-95

Horatiu Cirstea1, Germain Faure1, Maribel Fernández2,
Ian Mackie3,??, and François-Régis Sinot3,??

1 LORIA, BP 239 54506 Vandoeuvre-lès-Nancy Cedex, France
2 Dept. of Computer Science, King’s College London Strand, London WC2R 2LS, UK

3 LIX, École Polytechnique, 91128 Palaiseau, France

Abstract. We use the ρ-calculus as an intermediate language to com-
pile functional languages with pattern-matching features, and give an
interaction net encoding of the ρ-terms arising from the compilation.
This encoding gives rise to new strategies of evaluation, where pattern-
matching and ‘traditional’ β-reduction can proceed in parallel without
overheads.

1 Introduction

The λ-calculus is usually put forward as the abstract computational model un-
derlying functional programming, and graph rewriting or environment machines
are used to describe evaluation strategies and to derive concrete implementa-
tions (see for instance [26]). However, modern functional programming languages
have pattern-matching features which cannot be directly expressed in the λ-
calculus. To palliate this problem, pattern-calculi [23, 22, 4, 6, 8, 13] have been
introduced. The ρ-calculus [6, 8] is a pattern calculus combining the expressive-
ness of pure functional calculi and algebraic term rewriting. It is an extension
of the λ-calculus where we can abstract on patterns, not just on variables: ab-
stractions are written (p _ t) where p is a pattern and t is the body. The rule
describing the dynamics of application introduces a matching constraint :

(ρ) (p _ t) u → [p ¿ u]t

and the (σ) rule solves this constraint and applies the matching solution σp¿u

to t.

(σ) [p ¿ u]t → σp¿u(t)

? Partially funded by the Alliance France-UK project “Implementation Techniques for
the Rho Calculus”.

?? Projet Logical, Pôle Commun de Recherche en Informatique du plateau de Saclay,
CNRS, École Polytechnique, INRIA, Université Paris-Sud.



New Evaluation Strategies for Functional Languages 81

The ρ-calculus is parametric in the matching theory: we can use syntactic match-
ing or any arbitrary matching theory, even without unique principal solutions.In
the latter case, we can use a structure to deal with the multiple solutions.

As an intermediate language for the compilation of functional languages, the
ρ-calculus has several advantages: patterns are an integral part of the frame-
work, which allows us to reason about pattern-matching and to study the inter-
action between pattern-matching and β-reduction at an abstract level; and the
ρ-calculus can be used to model not only functional behaviour but also impera-
tive features [17], object-oriented features [7], etc.

In this paper we exploit the first point above: we use the ρ-calculus as an
intermediate language to compile functional languages with pattern-matching
features, and adapt the evaluation strategies developed for the ρ-calculus to the
specific constraints arising from typed functional programs. We then use inter-
action nets to define and implement the evaluation strategies. This methodology
gives rise to new, efficient strategies of evaluation for functional languages, which
we describe below.

In [11] we defined two alternative encodings of the ρ-calculus in interaction
nets [15]. Interaction nets are graph rewrite systems which have been used for
the implementation of efficient reduction strategies for the λ-calculus [12, 1, 20].
Since interactions are local and strongly confluent, they can take place in any
order, even in parallel (see [24]), which makes interaction nets well-suited for
the implementation of programming languages [10]. The first encoding of the
ρ-calculus in interaction nets given in [11] is simple and exploits the implicit
parallelism of rules (ρ) and (σ): a term t with a matching constraint (generated
by an application of ρ) can be applied to another term (again using ρ) while
the matching constraint is being solved. However, this simple encoding can only
model a strict semantics (see [8]) where a ρ-calculus term with a blocked match-
ing evaluates to ⊥ (fail). The second encoding of [11], which introduces a match-
ing agent and will be called the explicit encoding, can implement either a strict
or a non-strict semantics, but it looses parallelism.

In the case of typed functional languages with pattern-matching, the ρ-terms
arising from the compilation of programs do not remain blocked. More precisely,
a matching failure may occur only if the definitions by pattern-matching are non-
exhaustive. We will show that, in this case, a combination of the simple interac-
tion net encoding and the explicit encoding provides an implementation where
pattern-matching and ‘traditional’ β-reduction can proceed in parallel, without
additional overheads. For example, if we have a function with two branches (pat-
terns), say cons x nil and nil, and the argument is a cons, this will compile
into a net which, after selecting the cons branch, will check that the nested
nil pattern matches while the substitution for x is being performed. We give
more examples in Section 4. This is the main contribution of this paper: indeed,
the compilation of functional programs in the ρ-calculus, and the subsequent
interaction net encoding, uncover a new strategy of evaluation which naturally
exploits the implicit parallelism of the ρ and σ rules.



82 H. Cirstea, G. Faure, M. Fernández, I. Mackie, F.-R. Sinot

This paper is organised as follows: after giving some background (Section 2),
in Section 3 we define a minimalistic functional language, and give a compila-
tion into the ρ-calculus. Section 4 shows an interaction net encoding for this
intermediate language. We conclude in Section 5.

2 Background

We assume familiarity with the λ-calculus [2], and start with a short presentation
of the ρ-calculus; for more details see [6, 8, 3]. We write x, y, . . . for variables and
f, g, . . . for constants. The set of ρ-terms (or just terms, ranged over by t, u, v)
T is defined by:

t, u ::= x | f | p _ t | [p ¿ u]t | (t u) | 〈t, u〉

where P is an arbitrary subset of T (p ∈ P are called patterns); p _ t is a
generalised abstraction (it can be seen either as a λ-abstraction on a pattern
p instead of a single variable, or as a standard term rewriting rule); [p ¿ u]t
is a delayed matching constraint denoting a matching problem p ¿ u whose
solutions (if any) will be applied to t; (t u) denotes an application (we omit
brackets whenever possible, and associate to the left); and finally, 〈t, u〉 is called
a structure. Terms are always considered modulo α-conversion (later this will be
realised for free in interaction nets).

As usual substitutions are mappings from variables to terms, with finite do-
main, written {x1 := t1, . . . , xn := tn}. We write substitutions postfix: tσ denotes
the term obtained by applying the substitution σ to t.

The ρ-calculus is parameterised by the set P of patterns. Here we use linear
(i.e., each variable occurs at most once) algebraic patterns: p ::= x | f p1 . . . pn

Example 1. The boolean function null that tests if its argument is the empty
list can be defined in the ρ-calculus as follows:

null = l _ (〈Nil _ True, Cons x y _ False〉 l)

The following reduction rules give the dynamics of the calculus. We write the
reduction →i (for implicit) or simply → when there is no risk of confusion:

(ρ) (p _ t) u → [p ¿ u]t
(σ) [p ¿ u]t → tσp¿u

(δ) 〈t, u〉 v → 〈t v, u v〉

The rule (σ) asks for an external matching algorithm to find a solution of the
matching of p with u, and applies the corresponding substitution to t. In this
paper we assume linear syntactic matching; under this assumption the calculus
is confluent [8].

In order to implement the ρ-calculus we need to make explicit the specifi-
cation of the matching algorithm. We recall the explicit ρ-calculus of [11] (see



New Evaluation Strategies for Functional Languages 83

also [5]), and extend it with rules to customise structures. Substitution will re-
main implicit, but we introduce an explicit application symbol • in patterns.

We write reduction in the explicit ρ-calculus →x (for explicit) or simply →
when there is no risk of confusion.

The rule (ρ) remains unchanged. We can decompose the rule (σ) into a finite
set of local rules:

(ac) f t → f • t
(aa) (t • u) v → (t • u) • v
(σa) [(p • r) ¿ (u • v)]t → [p ¿ u][r ¿ v]t
(σc) [f ¿ f ]t → t
(σv) [x ¿ u]t → t{x := u}

A matching problem (p ¿ u) may have no solution; this is called a blocked
matching. We add rules to detect failure (i.e., a clash):

(⊥1) [f ¿ g]t → ⊥ if f 6= g
(⊥2) [f ¿ (u • v)]t → ⊥
(⊥3) [f ¿ (p _ u)]t → ⊥
(⊥4) [(u • v) ¿ f ]t → ⊥
(⊥5) [(u • v) ¿ (p _ s)]t → ⊥

and rules to propagate ⊥. There are mainly two options:

1. Strict Semantics: (strict) C[⊥] → ⊥ for any context C[·]
This rule corresponds to an exception-like semantics of matching failure,
as in ML (e.g., even if the argument of an application is not used by the
function, the result is ⊥). In this semantics, a higher priority is given to
this rule than to any other applicable rule (i.e., this rule is tried before the
others).

2. Non-Strict Semantics: The rule (strict) defined above can be weakened to a
particular class C of strict contexts (for instance, C = {([ ] t), t ∈ T }):

(non-strict) C[⊥] → ⊥ for any C[·] ∈ C

We now turn our attention to structures. Since we will focus on ρ-terms
arising from functional programs, structures will only be created by the com-
pilation of a function defined by cases. Hence, structures will have the form
〈p1 _ t1, . . . , pn _ tn〉. Using (δ) and (ρ), an application of such structure to an
argument u produces 〈[p1 ¿ u]t1, . . . , [pn ¿ u]tn〉 where only one branch will
succeed. In our equational theory for structures ⊥ should be a neutral element.
This is achieved by the rules:

(stk) 〈t1, . . . , ti−1,⊥, ti+1, . . . , tn〉 → 〈t1, . . . , ti−1, ti+1, . . . , tn〉 1 ≤ i ≤ n
(singleton) 〈t〉 → t

The rule (stk) was used previously (see [27, 9]) to encode term rewriting
systems in the ρ-calculus. We could be more specific and force evaluation from
left to right for instance, but we prefer not to fix the strategy of evaluation yet.



84 H. Cirstea, G. Faure, M. Fernández, I. Mackie, F.-R. Sinot

Notice that a naive implementation of (δ) would copy the argument u, which
is inefficient. Since our use of structures will be limited to the compilation of case
constructs in typed programs, we will actually be able to use the information
provided by the type system to avoid copying the argument, thus optimising the
reduction of structures (see Section 4.4).

Example 2 (Fixpoints). A fixpoint operator is a term Y such that for all terms t,
Y t →∗ t (Y t). It is easy to check that the following terms are fixpoint operators
(the second has the advantage of being well-typed [27]):

– YT = (y _ x _ x (y y x)) (y _ x _ x (y y x))

– Yrec = x _ ((z _ z (rec z)) (rec f _ (x (f (rec f))))) where rec is a constant.

3 From a functional language to the ρ-calculus

We consider a simple functional language with terms built from variables x, y, . . .,
functional abstraction, application, data constructors C (each with a fixed arity),
and a case construct to define functions by pattern-matching on constructors.
We abbreviate t1, . . . , tn as t. Patterns are defined by the following grammar:

p ::= x |C(p)

with the usual linearity constraint (each variable may occur at most once in a
pattern). The syntax of terms is given by the grammar:

t, u ::= x | fn x.t | t u |C(t)

| case t of (pi Ã ui)i∈I

| fix(fn f.t)

A case branch of the form (pi Ã ·) acts as a binder i.e., fv(pi Ã ui) =
fv(ui) \ fv(pi) where fv(ui) denotes the set of free variables of ui.

We assume the language is typed. For simplicity, we consider a simply-typed
system where each constructor is associated to a datatype. We will base this
discussion on the following form of a datatype declaration, which introduces a
datatype DT with constructors C1, . . . , Cn, using some predefined types αi.

DT = C1(α1) | · · · | Cn(αn)

Example 3. In the sequel we will use the following datatypes for numbers and
lists with elements of type α:

Int = Z | S(Int)
List α = Nil | Cons(α,List α)



New Evaluation Strategies for Functional Languages 85

As usual, the type system ensures that in a case construct case t of (pi Ã

ui)i∈I all the branches have the same type and t has the same type as the patterns
pi (for all i ∈ I), that is, some datatype DT . We do not assume that the cases
are exhaustive, but we do assume they are non-overlapping for simplicity. We
use a strict matching semantics, as in ML (i.e., an application of a function to
an argument that is not covered by the case definition will produce a runtime
error). We omit the typing rules, which are standard.

The dynamics of the language is given by the following reduction rules (re-
duction is denoted by →f or simply →) where {x :=u} denotes the substitution
of x by u.

(fn x.t) u → t{x := u}
case t of (pi Ã ui)i∈I → uk σ (if t matches pk with substitution σ)

fix(fn f.t) → (fn f.t) fix(fn f.t)

Since the rewrite rules are left-linear and non-overlapping (that is, they define
an orthogonal system [14]), the language is confluent. It is easy to see that it is
not terminating, due to the presence of the fixpoint operator fix.

Programs in this language are well-typed, closed terms (i.e., terms with no
free variables). We give now some simple examples.

Example 4. 1. Assuming that Nil with arity 0, and Cons with arity 2, are used
to define the datatype List as in Example 3, and that True and False are
the boolean constants, we can define the boolean function null by pattern-
matching as follows:
null , fn l.case l of (NilÃ True, Cons(x, y)Ã False)

2. Assuming that Z with arity 0, and S with arity 1 are used to define the
datatype Int as in Example 3, the recursive function length can be defined
by pattern-matching as follows:
length , fix(fn len.fn l.case l of (NilÃ Z,Cons(x, y)Ã S(len y)))

Notice that we have not included a conditional in the syntax of the language,
but it can be easily encoded with a case over the booleans True, False. Also,
we do not have named functions and letrec but these can be easily encoded
using fix.

3.1 Compilation

The following compilation function, defined by induction on terms, translates
terms in the typed functional language into the ρ-calculus:

JxK = x

Jfn x.tK = (x _ JtK)

Jt uK = JtK JuK

JC(t1, . . . , tn)K = C Jt1K . . . JtnK

Jcase t of (p1 Ã u1, . . . , pn Ã un)K = 〈Jp1K _ Ju1K, . . . , JpnK _ JunK〉 JtK

Jfix(fn f.t)K = Y Jfn f.tK



86 H. Cirstea, G. Faure, M. Fernández, I. Mackie, F.-R. Sinot

where Y is a fixpoint operator of the explicit ρ-calculus (see Example 2). We
leave Y abstract because it is an implementation choice. In particular, this will
enable us to use a more efficient translation into interaction nets.

Example 5. We can check that the compilation of the function null defined in
Example 4 gives the function null in the ρ-calculus as given in Example 1.

Note that case constructs are compiled into structures applied to an argu-
ment, and can be reduced using the δ rule. The interaction net encoding will
ensure that JtK is not copied, and moreover it will allow matching to be carried
in parallel with other reductions, if possible.

We define the compilation of σ = {x1 := u1, . . . , xn := un} to be the substi-
tution JσK = {x1 := Ju1K, . . . , xn := JunK}.

We now state some soundness invariants.

Proposition 6. 1. For all terms t and all substitutions σ, JtσK = JtKJσK.
2. For all patterns p and all terms u:

– The matching problem p ¿ t has a solution iff the matching problem
JpK ¿ JtK has a solution.

– The substitution σ is a solution of the matching problem p ¿ t iff the
substitution JσK is a solution of the matching problem JpK ¿ JtK.

3. For all terms t and u, if t →f u, then JtK →∗
x JuK.

One can notice that in the ρ-calculus the granularity of the reduction is
finer than in the chosen functional language and thus, the intermediate ρ-terms
obtained during the reduction of the translation of a program t do not necessarily
correspond to a program. More precisely, for a reduction JtK →x u we cannot
always exhibit a term u′ such that t →f u′ and Ju′K = u. Nevertheless, if the
reduction of the term u continues then the term Ju′K is eventually reached.

Lemma 7. For all programs t and for all terms u such that JtK →x u there
exists a program v such that u →∗

x JvK and t →∗

f v.

The following proposition is a corollary of the previous results.

Proposition 8 (Correctness). Let t be a program and v be a normal form,
then t →∗

f v iff JtK →∗
x JvK.

In the following section we give an interaction net implementation for the
functional language defined above, which defines a strategy of evaluation based
on the encodings of the ρ-calculus presented in [11] and the coding of datatypes
discussed in [21]. Although we focus on implementation in this paper, the inter-
mediate ρ-calculus compilation has also interesting applications for programming
language design (for instance one could study the properties of a more general
language including non-linear patterns, or non-syntactic matching theories) and
could also be used to study program transformations (in the same way as, for
instance, explicit substitution calculi) and to prove correctness of program opti-
misations.



New Evaluation Strategies for Functional Languages 87

4 Interaction Net Encoding

4.1 Preliminaries

A system of interaction nets is specified by a set Σ of symbols with fixed arities,
and a set R of interaction rules. An occurrence of a symbol α ∈ Σ is called an
agent. If the arity of α is n, then the agent has n + 1 ports: a principal port
depicted by an arrow, and n auxiliary ports.

µ´
¶³

α

?

@ ¡· · ·
x1 xn

Intuitively, a net N is a graph (not necessarily connected) with agents at
the vertices and each edge connecting at most 2 ports. The ports that are not
connected to another agent are free. There are two special instances of a net: a
wiring (no agents) and the empty net; the extremes of wirings are also called
free ports. The interface of a net is its set of free ports.

An interaction rule ((α, β) =⇒ N) ∈ R replaces a pair of agents (α, β) ∈
Σ × Σ connected together on their principal ports (an active pair or redex ) by
a net N with the same interface. Reduction is local, and there may be at most
one rule for each pair of agents.

The following diagram shows the format of interaction rules (N can be any
net built from Σ).

µ´
¶³

α µ´
¶³

β-¾
@

¡

¡

@

...
...

x1

xn

ym

y1

=⇒ N
...

...
x1

xn

ym

y1

We show as an example the interaction rules of two ubiquitous agents, namely
the erase (ε), of arity 0, which deletes everything it interacts with, and the
duplicator (δ), of arity 2, which copies everything. These are represented by the
following diagrams, where α is any node. We refer to [15] for more details and
examples.

µ´
¶³

ε

µ´
¶³

α

?
6

¡ @· · ·
z

=⇒ µ´
¶³

ε

?

· · ·

z

µ´
¶³

ε

?

µ´
¶³

α

¡ @· · ·
z

µ´
¶³

δ
@ ¡u v

u v

6
? =⇒

µ´
¶³

α µ´
¶³

α

µ´
¶³

δ µ´
¶³

δ· · ·

z? ?

6 6

¡
¡¡

@
@@



88 H. Cirstea, G. Faure, M. Fernández, I. Mackie, F.-R. Sinot

We use the notation =⇒ for the one-step reduction relation and =⇒∗ for its
transitive and reflexive closure. If a net does not contain any active pairs then
it is in normal form. The key property of interaction nets, besides locality of
reduction, is strong confluence. There are several implementations of interaction
nets, see for instance [16] and [25]; the latter has been designed to take advantage
of additional processors, thus giving a parallel implementation of interaction
nets.

4.2 Implementing the Language

We will assume that the problems of binding and substitution can be solved as in
any off-the-shelf interaction net encoding of the λ-calculus (see for instance [18,
19]), and concentrate on the encoding of the explicit matching and structure
rules given in Section 2. This methodology is justified by the fact that the terms
p _ t and x _ [p ¿ x]t are extensionally equivalent, so that we can safely
precompile terms in order to abstract only on variables, as in the λ-calculus, and
have explicit matching constraints from the beginning. Also, there is a standard,
efficient way to encode recursion in interaction nets for the λ-calculus, which
consists of building a cyclic structure which explicitly “ties the knot”. The idea
corresponds exactly to an encoding of recursion in graph reduction (see Peyton
Jones [23] for instance), and was adapted to interaction nets in [18]. We use this
for the encoding of Y (see [20] for details).

We now define by induction a function T(·) to translate the ρ-terms arising
from the compilation of functional programs into interaction nets, and we give
the interaction rules that will be used to evaluate them. As in the simple in-
teraction net encoding of the ρ-calculus described in [11], a ρ-term t with free
variables fv(t) = {x1, . . . , xn} will be translated to a net T(t) with the root edge
at the top, and n free edges corresponding to the free variables.

T(t)

· · ·
x1 xn

Variable: If t is a variable then T(t) is just a wire.
Constant: For each constant f we introduce an agent as shown in Figure 1

(left).
Matching Constraint: A term of the form [p ¿ u]t is encoded as shown

in Figure 1 (right)4 which can be interpreted as the substitution in t of
the (possible) solution of the matching (the left subnet corresponds to the
matching problem p ¿ u).

Structure: We will discuss the encoding of structures at the end of the section.
Abstraction: We assume that terms have been precompiled to abstract only

on variables, as described above; hence we can reuse the abstraction of the
λ-calculus.

4 A dashed edge represents a bunch of edges (a bus).



New Evaluation Strategies for Functional Languages 89

µ´
¶³

f

6
T(u) T(p) T(t)

r rr

Fig. 1. Translation of constants (left) and matching constraints (right).

µ´
¶³

f µ´
¶³

fµ I =⇒
„

empty

net

«

µ´
¶³

f µ´
¶³

gµ I =⇒ µ´
¶³
fail

6

Fig. 2. Matching of constants (success and failure)

Application: Similarly for application, we introduce an agent @ with its prin-
cipal port oriented towards the left subterm, so that interaction with an
abstraction is possible. To implement the rule (ρ), we define an interaction
rule between abstraction and application as in the λ-calculus (see for in-
stance [19]).

4.3 Matching Rules

The matching rules are inspired by the “simple” encoding of [11]. Assume we
have just one matching constraint to solve (the general case of a structure with
multiple branches will be treated below). The matching algorithm is initiated
by connecting the root of a pattern with the term to match. Thus, the rule (σv)
(matching against a variable) is realised for free, as in the λ-calculus. To simulate
(σa) and (⊥1), constants will interact: Two identical constants cancel each other
to give the empty net, as indicated in Figure 2 (left). If the agents are not the
same, then we introduce an agent fail, which represents a failure in the matching
algorithm, as indicated in Figure 2 (right). We interpret a net containing an
agent fail as an overall failure, thus implementing the strict matching semantics.

We also need interaction rules to convert a usual application (@) into a
pattern application (•) when it is part of an algebraic pattern (or term), these are
shown in Figure 3; and a rule to match applications, which is given in Figure 4,
as well as interaction rules corresponding to the rules (⊥2) and (⊥4) which we
omit. We do not need interaction rules corresponding to (⊥3) and (⊥5) since the
language is typed.

We refer to [11] for a detailed description and correctness proofs for matching
constraints. In particular, in [11] it is shown that with this encoding of matching
we can only implement a strict ρ-calculus semantics, but, on the positive side, it
allows us to obtain a strategy of evaluation with a good potential for parallelism.



90 H. Cirstea, G. Faure, M. Fernández, I. Mackie, F.-R. Sinot

µ´
¶³

f

µ´
¶³

@

¡¡µ
ª @ =⇒ µ´

¶³
•

6

µ´
¶³

f
¡¡µ

@
µ´
¶³
•

µ´
¶³

@

¡¡µ
ª @ =⇒ µ´

¶³
•

6

µ´
¶³
•

¡¡µ
@

¡ @ ¡ @

Fig. 3. Rules to transform patterns

µ´
¶³
• µ´

¶³
•

6 6
=⇒

¡ @ ¡ @

Fig. 4. Matching applications

This is because matching interactions involving the constraint associated to an
abstraction can take place in parallel with a traditional β/ρ reduction involving
the same abstraction, without introducing any ‘administrative’ agents (i.e., no
overheads). We will use this feature in the encoding of functional programs below,
to derive an evaluation strategy with the same potential for parallelism. We give
examples at the end of the section.

4.4 Structures

We will now describe the encoding of structures and the rule (δ). First remark
that structures only arise from the compilation of case constructs, more pre-
cisely, structures can only occur in subterms of the form: 〈l1 _ r1, . . . , ln _ rn〉 t.
The goal is to avoid making multiple copies of t in the implementation of (δ),
and to permit matching to proceed in parallel with functional computation,
whenever possible. For these reasons, we will not treat these terms as standard
applications. Instead, for each structure 〈l1 _ r1, . . . , ln _ rn〉 t (with n > 1;
if n = 1 we can treat it as an abstraction) occurring in the compilation of a
program we will introduce an agent case as explained below, where we build
a net that minimises the number of selections necessary. To keep the diagrams
simple, we show the compilation in stages.

First, we consider the case when each li is a different constant. We can then
encode the structure using a simple case agent as follows:

T(t)

T(r1) T(rn)· · ·

· · ·
µ´
¶³
case¾

¡¡ @@



New Evaluation Strategies for Functional Languages 91

with the following collection of rules which select the appropriate branch of the
case, and erase all other options using ε agents.

µ´
¶³
caseµ´

¶³
Ci
-¾

¡ @· · ·

=⇒ µ´
¶³

ε

i

µ´
¶³

ε

? ?/ /

The top auxiliary port of a case agent represents the output; the interaction
rule above selects the branch i corresponding to the constructor Ci and connects
it to the output port (all other branches are erased). It is a straightforward
exercise to verify that this indeed mimics the corresponding reduction rule. Note
that we are assuming that all patterns are disjoint (non-overlapping) but they
may be non-exhaustive. Note also that garbage collection (using ε) is explicit in
interaction nets, since interaction rules must preserve the interface of the net.

Next we deal with deeper patterns, including variables. To give the idea we
consider the case where there is just one pattern of depth greater than 1 (i.e., the
root is an application), for instance: 〈C1 _ r1, C2 x y _ r2〉 t. The compilation
and interaction rules are as follows:

µ´
¶³
case

T(t) T(r1) T(r2) T(y) T(C2 x)

¾

¡¡ @@

µ´
¶³
case

@

µ´
¶³
C1

¡¡µ
ª

=⇒ µ´
¶³

ε

?

µ´
¶³

ε -

µ´
¶³

ε -

¡¡µ
ª

µ´
¶³
•

¡ @

µ´
¶³
case

@

=⇒

µ´
¶³

ε

?

Again the top auxiliary port of case is the output; the first rule above cor-
responds to a pattern of depth 1 (as before). Note that in the second interaction
rule, the right hand side has a wire to connect the net T(r2) to the output port of
the case agent. In the compilation, the nets T(y) and T(C2 x) are there precisely
to complete the pattern matching, even though the branch would have already
been selected. Any resulting substitutions generated are connected to the free



92 H. Cirstea, G. Faure, M. Fernández, I. Mackie, F.-R. Sinot

variables of T(r2). The extension to the case where there are more constant
patterns is straightforward.

Next we examine the case when there are more than one application cases to
consider. Again, to keep the diagrams simple, we will concentrate on this aspect,
and ignore the patterns of depth one that were given previously (extra ports in
the case agent would be needed). Consider the example: 〈C1x _ r1, C2 y z _
r2〉 t. Both patterns have an application at the root, so we cannot use a case
to distinguish them. However, we can identify where the patterns disagree, and
consume that part before using a case agent, as above. Once the common prefix
has been consumed, then we are left with a situation which is exactly as explained
in the previous case (i.e., constant and an application).

The following is the compilation, where the net p is the common prefix, with
principal ports pointing towards T(t) (so the rules in Subsection 4.3 will apply).
In the diagram below we assume that there is nothing else to the pattern, as
this situation has already been dealt with previously.

T(t)

p µ´
¶³
case

T(r1) T(r2)

¾

¡¡ @@/
/

/

The interaction rules are now identical to the ones previously given for the
case agent, except that in addition we must connect the additional bindings to
the correct branch. This completes the encoding of structures, which requires the
combination of the above features. In addition, when the terms ri have common
free variables we must use extra agents to allow these variables to be shared.
The compilation for such a feature is standard and will be omitted here; we refer
the reader to [21] for details.

Pattern matching is slightly more efficient if we use an alternative encoding
for patterns, where a constructor of arity n in the functional language is repre-
sented by an agent of arity n (instead of a 0-ary constant). This has the advantage
of avoiding interactions between case agents and the algebraic application agent.

At the end of the section we give an example showing how the encoding of
the ρ-calculus used here allows us to exploit the implicit parallelism between
matching and functional computations.

4.5 The Parallel Strategy at Work

To illustrate the potential for parallelism, we give an example using a variant of
the Ackermann function on coloured trees, which is based on the datatype:

Tree = Nil | Red(Int, T ree, T ree) | Black(Int, T ree, T ree)

Let ack be the Ackermann function. The function ackt takes two trees and
computes a new tree where the nodes contain integers obtained by applying ack



New Evaluation Strategies for Functional Languages 93

to the corresponding nodes of the arguments, but only when the trees have the
same alternating colours. It is defined in our functional language as follows.

ackt , fix(fn ackt.fn t1.fn t2.case t1 of
(
Red(x1, Black(y1, tL, tR), Black(z1, sL, sR))Ã
case t2 of
(
Red(x2, Black(y2, t

′

L, t′R), Black(z2, s
′

L, s′R))Ã
Red(ack(2 ∗ x1, x2),

ackt(Black(y1, tL, tR), Black(y2, t
′

L, t′R)),
ackt(Black(z1, sL, sR), Black(z2, s

′

L, s′R)))
)

Black(x1, Red(y1, tL, tR), Red(z1, sL, sR))Ã
case t2 of
(
Black(x2, Red(y2, t

′

L, t′R), Red(z2, s
′

L, s′R))Ã
Black(ack(2 + x1, x2),

ackt(Red(y1, tL, tR), Red(y2, t
′

L, t′R)),
ackt(Red(z1, sL, sR), Red(z2, s

′

L, s′R)))
)

)

The compilation of this program in the ρ-calculus and subsequent encoding
in interaction nets produces a net with an active pair between the agent case
representing the first case in the program and the agent Red.

After the interaction between the first case agent and Red, the actual value
of x1 gets connected to the multiplication agent in the first branch of the case,
so that we can start computing 2 ∗ x1 in parallel with the rest of the matching.
Then, after the interaction between the second case agent and Red, we also get
the value of x2 connected to the net representing the Ackermann function and
we can then compute in parallel the value of ack(2 ∗x1, x2) while the rest of the
pattern (i.e., Black, Black) is checked.

5 Conclusion

We have proposed to use the ρ-calculus as an alternative foundation for func-
tional programming languages, and provided a compilation of a simple functional
programming language into the ρ-calculus. This calculus is better adapted than
the λ-calculus for representing features, specifically pattern matching, of func-
tional languages. One of the main features of our compilation is that we can
experiment with different pattern-matching algorithms and matching strategies,
in a modular way. We have thus a powerful formalism for programming language
design, and for reasoning about functional program implementation. Using this
as an intermediate language, we have demonstrated that we can compile, also



94 H. Cirstea, G. Faure, M. Fernández, I. Mackie, F.-R. Sinot

in a modular way, into interaction nets, and obtain new strategies of evaluation
of programs with pattern-matching. Since the translation into interaction nets
is modular, the strategy specified here can be combined with any β-reduction
strategy, including an optimal one.

The interaction net encoding, although derived from a strategy of evaluation
in the ρ-calculus, could of course be defined directly on the functional programs,
without the intermediate compilation. We hope that the compilation into the
ρ-calculus will allow us to transfer other results into the functional language
(e.g. extensions to accommodate imperative features).

Acknowledgements: We thank Gilles Dowek for useful discussions on the subject
of this paper.

References

1. A. Asperti, C. Giovannetti, and A. Naletto. The Bologna optimal higher-order
machine. Journal of Functional Programming, 6(6):763–810, Nov. 1996.

2. H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland,
revised edition, 1984.

3. G. Barthe, H. Cirstea, C. Kirchner, and L. Liquori. Pure patterns type systems.
In Principles of Programming Languages - POPL2003, New Orleans, USA. ACM,
Jan. 2003.

4. V. Breazu-Tannen, D. Kesner, and L. Puel. A typed pattern calculus. In Proceed-
ings of the 8th Annual IEEE Symposium on Logic in Computer Science (LICS’93),
Montréal, Canada, 1993.

5. H. Cirstea, G. Faure, and C. Kirchner. A rho-calculus of explicit constraint ap-
plication. In Proceedings of the 5th workshop on rewriting logic and applications.
Electronic Notes in Theoretical Computer Science, 2004.

6. H. Cirstea and C. Kirchner. The rewriting calculus — Part I and II. Logic Journal
of the Interest Group in Pure and Applied Logics, 9(3):427–498, May 2001.

7. H. Cirstea, C. Kirchner, and L. Liquori. Matching Power. In A. Middeldorp,
editor, Proceedings of RTA’2001, Lecture Notes in Computer Science, Utrecht (The
Netherlands), May 2001. Springer-Verlag.

8. H. Cirstea, C. Kirchner, and L. Liquori. Rewriting calculus with(out) types. In
F. Gadducci and U. Montanari, editors, Proceedings of the fourth workshop on
rewriting logic and applications, Pisa (Italy), Sept. 2002. Electronic Notes in The-
oretical Computer Science.

9. H. Cirstea, L. Liquori, and B. Wack. Rewriting calculus with fixpoints: Untyped
and first-order systems. In Post-proceedings of TYPES, Lecture Notes in Computer
Science. Springer-Verlag, 2003.

10. M. Fernández and I. Mackie. Interaction nets and term rewriting systems. Theo-
retical Computer Science, 190(1):3–39, January 1998.

11. M. Fernández, I. Mackie, and F.-R. Sinot. Interaction nets vs. the rho-calculus:
Introducing bigraphical nets. In Proceedings of EXPRESS’05, satellite workshop
of Concur, San Francisco, USA, 2005, Electronic Notes in Computer Science. El-
sevier, 2005.

12. G. Gonthier, M. Abadi, and J.-J. Lévy. The geometry of optimal lambda reduc-
tion. In Proceedings of the 19th ACM Symposium on Principles of Programming
Languages (POPL’92), pages 15–26. ACM Press, Jan. 1992.



New Evaluation Strategies for Functional Languages 95

13. C. B. Jay and D. Kesner. Pure pattern calculus. In Proceedings of the European
Symposium on Programming (ESOP) LNCS 3924, 2006.

14. J.-W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction
systems, introduction and survey. Theoretical Computer Science, 121:279–308,
1993.

15. Y. Lafont. Interaction nets. In Proceedings of the 17th ACM Symposium on Princi-
ples of Programming Languages (POPL’90), pages 95–108. ACM Press, Jan. 1990.

16. S. Lippi. in2 : A graphical interpreter for interaction nets. In S. Tison, editor,
Rewriting Techniques and Applications (RTA’02), volume 2378 of Lecture Notes in
Computer Science, pages 380–386. Springer, 2002.

17. L. Liquori. iRho: The Software (system demonstration). In Proceedings of Devel-
opments in Computational Models (DCM’05, Lisbon, Portugal, 2005, Electronic
Notes in Theoretical Computer Science. Elsevier, 2005.

18. I. Mackie. The Geometry of Implementation. PhD thesis, Department of Comput-
ing, Imperial College of Science, Technology and Medicine, September 1994.

19. I. Mackie. YALE: Yet another lambda evaluator based on interaction nets.
In Proceedings of the 3rd International Conference on Functional Programming
(ICFP’98), pages 117–128. ACM Press, 1998.

20. I. Mackie. Efficient λ-evaluation with interaction nets. In V. van Oostrom, edi-
tor, Proceedings of the 15th International Conference on Rewriting Techniques and
Applications (RTA’04), volume 3091 of Lecture Notes in Computer Science, pages
155–169. Springer-Verlag, June 2004.

21. I. Mackie. An interaction net implementation of additive and multiplicative struc-
tures. Journal of Logic and Computation, 15(2):219–237, April 2005.

22. V. Oostrom. Lambda calculus with patterns. Technical Report IR 228, Vrije
Universiteit, Amsterdam, November 1990.

23. S. L. Peyton Jones. The Implementation of Functional Programming Languages.
Prentice Hall International, 1987.

24. J. S. Pinto. Sequential and concurrent abstract machines for interaction nets. In
J. Tiuryn, editor, Proceedings of Foundations of Software Science and Computation
Structures (FOSSACS), volume 1784 of Lecture Notes in Computer Science, pages
267–282. Springer-Verlag, 2000.

25. J. S. Pinto. Parallel evaluation of interaction nets with mpine. In A. Middeldorp,
editor, RTA, volume 2051 of Lecture Notes in Computer Science, pages 353–356.
Springer, 2001.

26. R. Plasmeijer and M. Eekelen. Functional Programming and Parallel Graph Rewrit-
ing. Addison Wesley, 1993.

27. B. Wack. Typage et déduction dans le calcul de réécriture. PhD thesis, Université
Henri Poincaré - Nancy I, 2005.



Strategic Graph Rewriting

Sixth Int’l Workshop on Reduction Strategies in Rewriting and Programming (WRS’06)
S. Antoy (ed.), Seattle, Washington, August 11, 2006
Portland State University, Tech. Report 06-04, pages 96-111

Transforming and Traversing Terms with References

Karl Trygve Kalleberg1 and Eelco Visser2

1 University of Bergen, Norway, karltk@ii.uib.no
2 Utrecht University, The Netherlands, visser@cs.uu.nl

Abstract. Some transformations and many analyses on programs are either dif-
ficult or unnatural to express using terms. In particular, analyses that involve type
contexts, call- or control flow graphs are not easily captured in term rewriting
systems. In this paper, we describe an extension to the System S term rewriting
system that adds references. We show how references are used for graph rewrit-
ing, how we can express more transformations with graph-like structures using
only local matching, and how references give a representation that is more natural
for structures that are inherently graph-like. Furthermore, we discuss trade-offs
of this extension, such as changed traversal termination and unexpected impact
of reference rebinding.

1 Introduction

Strategic programming is a powerful technique for program analysis and transformation
that offers the separation of local data transformations from data traversal logic. The
technique is independent of language paradigm and underlying data structure, but is
perhaps most frequently found in functional and term rewriting languages. Much of its
power comes from the ability to define complex traversal strategies from a small set of
traversal combinators. Traversal strategies are often used to traverse terms.

Terms, when implemented as maximally shared, directed acyclic graphs, have many
desirable properties for representing abstract syntax trees (ASTs) as used in program
transformation. In the ATerm model [5], maximal sharing of subterms means that all oc-
currences of a term are represented by the same node in memory. Consequently copying
of terms is achieved by copying pointers, and term equality entails pointer comparison.
The model ensures persistence; modifying a term means creating a new term, the old
term is still present. This makes it easy to support backtracking. Destructive updates of
term references are not permitted, which allows efficient memory usage.

A consequence of the DAG representation is that terms cannot have explicit back-
links, i.e. references to arbitrary subterms elsewhere in the same term. Such references
to other parts of the AST, including an ancestor of a term, are useful for expressing
the results of semantic analyses as local information for rewrite rules. Turning ASTs
into terms with references can turn some transformation problems from global-to-local
into local-to-local. By adding explicit references in the terms, we arrive at a variation
of term graphs [12]. The added expressivity gained from term references allows us to



Strategic Graph Rewriting 97

encode graphs rather succinctly, and therefore also express structures that are inherently
graph-like more naturally, such as high-level program models and many intermediate
compiler representations, including call-, control flow- and type graphs, thus setting the
stage for implementing transformations such as constant and copy propagation, type
checking and various static analyses. We conserve the ability to express program trans-
formations using local rewrite rules together with generic traversal strategies, obtaining
a form of strategic graph rewriting. By adding explicit references, we also give up some
of the desirable properties of terms mentioned above, as the references allow destruc-
tive updates, change the termination criteria for traversals, alter the matching behavior
of rewrite rules and exhibit side effects due to reference rebinding.

In this paper, we explore the design of a strategic rewriting language on terms with
references, and discuss the tradeoffs found in this design space. We will show that we
can arrive at a practical and useful variation of term graphs that allows us to express
graph algorithms and rewriting problems rather precisely.

The paper is organized as follows: In Sec. 2, we introduce basic term rewriting with
Stratego, show new primitives for manipulating references and how existing constructs
extend to handle terms with references. In Sec. 3, we show how the new language fea-
tures are used to compute various common graph representations for programs from
ASTs. In Sec. 4, we implement two basic graph algorithms: depth first search and
strongly connected components, and their application to finding sets of mutually re-
cursive functions. We also discuss an implementation of lazy graph loading. In Sec. 5,
we discuss notable aspects of our implementation. In Sec. 6, we discuss related work.
In Sec. 7, we discuss design tradeoffs and future work. We conclude in Sec. 8.

2 Extending Term Rewriting Strategies to Term Graphs

We now present the extension of the strategic term rewriting language Stratego with
term references. First, we give an overview of the basic concepts of Stratego. Next, we
extend terms to term graphs, i.e. terms with references, by introducing primitives for
references. Finally, we discuss rewrite rules and generic traversals on term graphs.

2.1 Term Rewriting Strategies

The Stratego program transformation language [2] is an implementation of the Sys-
tem S [14] core language for term rewriting. We will not discuss all the features of
System S and Stratego in this paper, but restrict ourselves mainly to conditional rewrite
rules, strategies, traversals, and scoped, dynamic rules.

Terms A term t is an application c(t1,...,tn) of a constructor c to zero or more
terms ti. There are some special forms of terms such as lists ([t1,...,tn]) and integer
constants, but these are essentially sugar for constructor terms. A term pattern is a term
p with variables x, written on the form p(x).



98 Karl Trygve Kalleberg and Eelco Visser

Rewrite Rules A conditional rewrite rule, R : pl(x) -> pr(x) where c, is a rule
named R that transforms the left-hand side pattern pl to an instantiation of the right-
hand side pattern pr if the condition c holds. The following rule can be used to simplify
addition expressions.

Simplify: Add(Int(x), Int(y)) -> z where <add> (x, y) => z

When applied to the term Add(Int(1),Int(2)), it will execute the condition <add>

(x,y), which is a strategy expression for computing the sum of two integers. The re-
sulting term, 3, will be bound to the variable z using the operator => as assignment.

Strategies Strategies are used to implement rewriting algorithms. A strategy is built
from primitive traversals (one(s), all(s), some(s)), combinators (s1 <+ s2 (left
choice), s1 ; s2 (strategy composition)), identity (id), failure (fail) and invocations
of rewrite rules or other strategies. The following strategy will attempt to apply the rule
Simplify to all subterms of the current term. If Simplify fails, either because the left
hand side pattern does not match, or because the condition does not hold, the strategy
id will be applied instead. id always succeeds, and returns the identity (i.e. same term).

try-simplify = all(Simplify <+ id)

When applied to Sub(Add(Int(1),Int(2)),Int(4)), the first subterm of Sub will
be rewritten to 3, but Simplify will fail for the second subterm (Int(4)), and id will
be applied instead. The end result is the term Sub(Int(3),Int(4)).

Strategy Expression Meaning
!p(x) (build) Instantiate the term pattern p(x) and make it the current term
?p(x) (match) Match the term pattern p(x) against the current term

s0 <+ s1 (left choice) Apply s0. If s0 fails, roll back, then apply s1

s0 ; s1 (composition) Apply s0, then apply s1. Fail if either s0 or s1 fails
rec x(s(x)) (recursion) Strategy x may be called in s for recursive application
id, fail (identity, failure) Always succeeds/fails. Current term is not modified
one(s) Apply s to one direct subterm of the current term
some(s) Apply s to as many direct subterms of the current term as possible
all(s) Apply s to all direct subterms of the current subterm

\pl(x) -> pr(x)\ Anonymous rewrite rule from term pattern pl(x) to pr(x)
?x@p(y) Equivalent to ?x ; ?p(y); bind current term to x then match p(y)
<s> p(x) Equivalent to !p(x) ; s; build p(x) then apply s

s => p(x) Equivalent to s ; ?p(x); match p(x) on result of s

Generic Traversal Strategies The primitive traversals one(s), some(s) and all(s)
can be composed using the strategy combinators to obtain generic traversal strategies,
which are used to control the order of rewrite rule applications throughout a term.

topdown(s) = s ; all(topdown(s))

bottomup(s) = all(bottomup(s)) ; s

The strategy topdown(s) will apply the strategy s to the current term before recur-
sively applying itself to all the subterms of the new current term. bottomup(s) works
similarly: s is applied to all subterms before the current term (with freshly rewritten
subterms) is processed by s.



Strategic Graph Rewriting 99

Build and Match Pattern matching is also available independently of rewrite rules by
the match operator strategy, written ?. The expression ?Add(Int(x ),Int(y )) when
applied to the term Add(Int(1),Int(2)), will bind x to 1 and y to 2. The inverse op-
erator of match is build, written !, which will instantiate a pattern. Given the previous
bindings of x and y, !Add(Int(x ),Int(y ))will instantiate to Add(Int(1),Int(2)).
Figures 1(a), and 1(b) show simple ground terms and their corresponding ATerms.

2.2 References

Thus far, the language we have presented only operates on plain terms. We now extend
terms with references. That is, in addition to a constructor application, a term can now
also be a term reference r. A reference can be thought of as a pointer to another term. It
is a a special kind of term that our language extension knows how to distinguish from
other terms (refer to Sec. 5 for implementation details).

We conceptually extend the language with three new operators for operating on ref-
erences: create new reference, dereference, and bind reference. The creation of a new
reference produces a fresh, unbound reference with a unique identifier. The identifier
is used to compare references with each other. Like terms, references may be passed
around as parameters, copied, matched, and assigned to variables. Additionally, ref-
erences may be bound. Binding a term to a reference is similar to binding a value to
a variable. After binding, a reference may be dereferenced. A deference will produce
the term which was previously bound. These conceptual operators are available inside
pattern expressions in three different forms, giving us term graph patterns.

Build and bind: !r~p(x) will instantiate the term pattern p(x) and bind the resulting
term to a new, unique reference which will be bound to the variable r. If the variable r is
already bound to a reference, a new reference will not be created. Instead, the reference
of r will be rebound to the new term.

Bind or match: ?r~p(x) matches a reference r bound to a term that matches the
term pattern p(x). More specifically, to succeed, this expression must be applied to a
reference r′, r′ must have the same reference identifier as r, and r′ must be bound to a
term which matches the term pattern p(x). If the variable r is unbound, r will be bound
to r′ before the matching starts.

Dereference: ^r will dereference the reference r, i.e., if r is bound to the term t, ^r
will produce t. With r bound to t, ?^r is equivalent to ?t and !^r is equivalent to !t.

With these operations, we can instantiate the term graph in Fig. 1(c): !r~Int(2);
!Sub(r,r). Or more succinctly as one term graph pattern: !Sub(r~Int(2),r). In the
following we use some idioms: When we need a reference, but do not yet have its term,
we use the expression !r~() to create a new reference bound to the “dummy” term ().
If we want to match a reference, but do not care what it is bound to, we write ?r~ .

General Graphs Term references may also be used to construct more general graphs,
such as those shown in Figures 1(d) and 1(e). When constructing mutually dependent
graphs, such as the f() and g() nodes in Fig. 1(d), term graph construction must always
be split into two stages. First, one half must be built with an unbound reference, e.g.
!f~FunDef("f",[g~()]), then the graph is connected when the other half is built:
!g~FunDef("g",[f]). Note the use of the idiom g~() to break cycles.



100 Karl Trygve Kalleberg and Eelco Visser

2.3 Rewrite Rules and References

Conditional rewrite rules on term graphs, R: gl(x) -> gr(x) where c, mirror rewrite
rules on terms. gl(x) and gr(x) are term graph patterns, as described previously and c

is the rule condition. Simplify can now be reformulated to work on term graphs:

Simplify: r0~Add(r1~Int(x~_), r2~Int(y~_)) -> r0~Int(r3)

where !r3~Int(r4~<add> (^x,^y))

Rewrite rules on term graphs will not maintain maximal sharing unless the programmer
takes explicit care. This leads to differences in the equality checking of term graphs
compared to equality checking of term. For efficiency, the built-in comparison of term
graphs only exists in a “shallow” form, i.e. identity checking: Two terms with references
are equal iff all subterms are structurally equal, and all references have the same identity.
This means that terms may now in fact be structurally equal, but differences in their
reference identities will prevent the shallow equality test from uncovering this.

Rebinding of References For terms, maximal sharing and constant time equality check-
ing is always guaranteed by the ATerm library. When matching a regular variable against
a term, the pointer to that term gets copied when it is used in a build. If the original term
is later modified, copy-on-write is performed behind the scenes to ensure referential
transparency. For term graphs, this is no longer the case, as references may be rebound
at any time. Consider the expression !Sub(r~Int(2),r) => a ; !r~Int(3). Here,
we assign the graph from Fig. 1(c) to the variable a, but subsequently change the bind-
ing of the references contained in the term graph of a. Effectively, this will change the
value of a after a was bound. This may seem dangerous, as it opens up for problems
related to lack of referential transparency. Certainly, these issues must be managed, but
it is important to note that the binding of terms to references is always done explicitly.
It is not possible to retroactively create a reference to a subterm of another term. E.g., if
the term Sub(Int(2),Int(2)) from Fig. 1(a) is bound to the variable v, it can never
change, as it does not contain any references.

If side effects are unwanted, in the sense that references in the term of an already
bound variable should never change, assignments of term graphs should be coupled with
a call to duprefs, e.g. !r~Int(2); !Sub(r,r); duprefs => a; !r~Int(3). Here,
the references in the term graph Sub(r,r) will be replaced with new, unique references
before the assignment, so that subsequent rebindings cannot affect the value of a.

2.4 Term Graph Traversal

We will now show how generic traversals are adapted to work on term graphs through
an example of term graph normalization. Our goal is to use Simplify, shown earlier, to
simplify the term graph Sub(r~Add(r’~Int(1),r’), r). Specifically, we only want
to simplify each referenced term once. This illustrates how “side-effects” can be used
beneficially, and how term graph rewriting can be more efficient than term rewriting:
we only need to consider identical terms once, because we can recognize them by their
reference identifiers. This argument is only valid once a proper term graph has been
constructed, however. Our current implementation makes no attempt at maintaining
such term graph properties globally during arbitrary rewriting sequences.



Strategic Graph Rewriting 101

Sub

Int

2

Sub(Int(2),

Int(2))

(a) DAG

Sub

Int

1

Int

2

Sub(Int(1),

Int(2))

(b) DAG

Sub

Int

2

Sub(r~Int(2),r)

(c) Term graph

a() b() c() d()

e() f() g() h()

(d) Call Graph

x > y

x:=1 x:=2

print x

(e) Flow
graph

Fig. 1. Examples of graphs supported by our language. References are shown as stippled edges.

Phased Traversals To manage termination of graph traversals, we introduce a concept
of phases. Phases are used to ensure that each reference is only visited once, so that
loops in the graph do not result in non-termination. We do this by introducing a new
primitive strategy, phase(s), and new variants of the primitive traversal operators:
wone(s), wsome(s) and wall(s).

When applied to a reference r, wall(s) will first dereference r, obtaining the term
t, then apply s to all subterms of t. The resulting term is rebound to r. If any subterm of
t is also a reference, it will be dereferenced before s is applied, and rebound afterwards.
wone(s) and wsome(s) are similar.

phase(s) will internally instantiate a new, globally unique marker and then apply
s to the current term. Any invocations of wone, wsome and wall in s will take the
marker into consideration. As each reference is dereferenced during the traversal, using
wone, wsome or wall, the marker is placed on the reference. Any subsequent attempt
at dereferencing will not yield a term result, thus making the reference untraversable.
When the phase is exited, all markers for that phase are removed. It is possible to nest
phases. The inner phase will instantiate a new, unique marker and can revisit references
already visited by its enclosing phase.

During a phased traversal, it is sometimes necessary to control whether the derefer-
ences due to matching or the ^ operator should be marked with the current phase marker
or not. This can be controlled by using wrap-ref(s), which dereferences, applies s,
then rebinds, irrespective of any phase markers. Analogously, wrap-phase-ref(s)
can be used to only visit unmarked references, and mark the reference after a visit.

Reference Expression Meaning
!r~p(x) (Build and bind) Instantiate term pattern p(x) and bind result to r.
?r~p(x) (Bind or match) See text in Sec. 2.2.
^r (Dereference) Look up term for r. Fail iff r is unbound.
duprefs Replace all references in the current term with new, unique ones
phase(s) For traversals done by s, visit each reference at most once
wrap-ref(s) Apply s to reference and rebind, irrespective of phase
wrap-phase-ref(s) Apply s to reference and rebind, while respecting phase

Generic Graph Traversals The following traversal strategies are adaptations of the
generic traversals for terms. They use phase markers to avoid visiting the same reference



102 Karl Trygve Kalleberg and Eelco Visser

more than once. These strategies use wall and will rebind references they encounter to
rewritten terms.

wtopdown(s) = phase(rec x(s ; wall(x)))

wbottomup(s) = phase(rec x(wall(x) ; s))

wdownup(s1,s2) = phase(rec x(s1; wall(x); s2))

Term Graph Normalization With the phasing and generic graph traversals in place, we
can now express term graph normalization simply and precisely as:

simplify = wbottomup(try(Simplify))

When applied to the term Sub(r~Add(Int(1),Int(2)), r), the result of simplify
is Sub(0~Int(3), 0~). Here, 0~t indicates that the reference 0 is bound to the term
t. Bindings of references are only shown once, the first time they are encountered.

For more general rule sets, it may be necessary to exhaustively apply rules using
a fixed-point strategy. The following strategy follows the same definition pattern as
innermost for plain terms [6, 7]:

winnermost(s) = phase(rec x(wall(x); try(s; x)))

The difference is that the phase mechanism ensures that a node in a term graph (where
all subterms are references) is visited only once. Thus the strategy performs a bottom-
up traversal and tries to apply the normalization strategy s to each node. If that suc-
ceeds, the result is transformed by a recursive call to itself. This would entail a com-
plete bottom-up traversal of the resulting term. However, the subterms that have already
been visited, i.e., normalized, will not be visited again. This property ensures efficient
implementation of the strategy, a result that was obtained in the term case only through
a specialization of the strategy to its argument rules [6, 7].

3 From Terms to Term Graphs

In this section, we describe how ASTs can be turned into various types of graphs com-
monly found in compilers, such as use-def chains, call graphs and flow graphs. First,
however, we turn our attention to the problem of computing term graphs from terms
with maximal sharing. This is done using dynamic rules.

Dynamic Rules A dynamic rule S is a rewrite rule which is defined and possibly un-
defined at runtime, see [2]. The expression rules(S: t -> r) creates a new rule in
the rule set for S. The scope operator {| S : s |} introduces a new scope for the
rule set S around the strategy s. Changes (additions, removals) to the rule set S done
by the strategy s are undone after s finishes (both in case of failure and success of s).
Sometimes, multiple rules in a rule set S may match. To get the results of all matching
rules in S, we can use bagof-S.



Strategic Graph Rewriting 103

Computing Term Graphs The following strategy implements a top down traversal with
a memoization scheme to efficiently construct term graphs from terms. For each term it
encounters, the strategy checks if this term has been memoized in the dynamic rule S.
If so, the term is replaced with its corresponding reference. If not, all its subterms are
replaced with references recursively, then a new reference is created and recorded in S.

term-graph = {|S: rec x(S<+all(term-graph); ?t; !r~t; rules(S: t->r)|}

Applied to A(A(B),A(A(B),A(B))), we get 3~A(1~A(0~B),2~A(1~,1~)).

3.1 Use-Def Chains

The use-def chain is a data representation found in most compilers for recording links
from the use of a variable to its closest definition or assignment. Such data flow infor-
mation is the basis for many program optimizations, in particular constant and copy
propagation. A variable is said to be used when its value is read; it is said to be defined
when it is assigned to, either at its declaration or by a later assignment statement. Def-
use chains are links from the definition of a variable to all its uses. The algorithm we
present below will record both def-use and use-def chains.

use-def = {| Use, Def: def-to-use ; use-to-def |}

def-to-use = Var <+ VarRef <+ Assign <+ If <+ wall(def-to-use)

use-to-def = topdown(try(add-ref-to-var <+ add-ref-to-assign))

new-def(|v,r) = rules(Def : v -> r)

add-use(|d,u) = rules(Use :+ d -> u)

add-ref-to-var = ?r~Var(v,e,_); !r~Var(v,e, Uses(<bagof-Use> r))

add-ref-to-assign = ?r~Assign(v,e,_); !r~Assign(v,e,Uses(<bagof-Use> r))

If: If(c,t,e) -> If(c’,t’,e’) where <def-to-use> c => c’

; <def-to-use> t => t’ \Def/ <def-to-use> e => e’

Var: Var(v, e) -> r where <def-to-use> e => x

; !r~Var(v,x,Uses([])); new-def(|v, r)

VarRef: VarRef(v) -> r where <bagof-Def> v => defs

; !r~VarRef(v, Defs(defs)); <map(add-use(|<id>, r))> defs

Assign: Assign(v, e) -> r where <def-to-use> e => x

; !r~Assign(v, x, Uses([])); new-def(|v,r)

The use-def algorithm assumes the existence of the following term constructors: If,
for if constructs, Var, for variable definitions, VarRef for variable (de)references and
Assign for assignments. It is divided into two parts, def-to-use and use-to-def.
For def-to-use: If a definition of a variable is seen, i.e. an Assign or Var term, this
term is replaced with a reference to itself, and a mapping from the variable name to the
reference is recorded in the dynamic rule Def using new-def. This is done in the Var

and Assign rules. When a variable use is subsequently seen, it is also replaced by a term
to itself by the VarRef rule. Its name is looked up in the Def rule, and references to the



104 Karl Trygve Kalleberg and Eelco Visser

closest definitions are added using bagof-Def, see VarRef. The Use rule is updated to
record the reference to this use, using add-use. Special care must be taken in the case
of control constructs. We only show the case for If. Here, one rule set is computed for
each branch, and the rule sets are joined afterwards, using the rule set union operator,
\Def/. This ensures that new definitions from both branches are kept.

For use-to-def: In this pass, each FunDef is updated to contain references to the
uses recorded by the previous pass, in the Use rule. When applied to a term for the
program

var x := 0; if (x > 0) { x := 1 + x } else { x := 2 + x } ; print x

we get (read Asn as Assign and VRef as VarRef):

Block([~5,If(Int(0),Block([~1]),Block([~3])),Print(~0)])

~0 = VRef("x",Defs([~3,~1])) ~1 = Asn("x",Add(Int(1),~2),Uses([~0]))

~2 = VRef("x",Defs([~5])) ~3 = Asn("x",Add(Int(2),~4),Uses([~0]))

~4 = VRef("x",Defs([~5])) ~5 = Var("x",Int("10"),Uses([~4,~2]))

3.2 Call Graphs

Another common program representation in modern compilers is the call graph. It
records the interrelationships between the functions of a program, i.e. which functions
call which, and is used for various static analyses such as reachability analysis, op-
timizations such as dead code removal and by documentation generation tools. The
following code transforms an AST into a call graph by introducing references from all
call sites (Call terms) to the corresponding function definition (FunDef) terms, and by
adding a reference from the FunDef being called (callee) to the FunDef of the calling
function (caller). Fig. 1(d) illustrates the forward direction.

compute-call-graph = {| FunLookup: add-refs ; add-call-markers |}

introduce-references = topdown(try(AddFunRef))

with-fundefs(s) = Program(map(s), id)

register-fun = ?r; ?r~FunDef(_,_,_,_); rules(CurFun: _ -> r)

AddFunRef: x@FunDef(n,_,_,_) -> r where !r~x; rules(FunLookup: n -> r)

add-call-markers = {| CalledBy, CurFun:

with-fundefs(wdownup(try(register-fun), try(AddCallRef)))

; with-fundefs(wrap-ref(AddCalledByRef)) |}

AddCallRef: Call(n, xs) -> Call(n, xs, r)

where <FunLookup> n => r ; CurFun => z ; rules(CalledBy :+ n -> z)

AddCalledByRef: FunDef(n,a,t,b) -> FunDef(n,a,t,ns,b)

where <bagof-CalledBy> n => ns

Three dynamic rules are used in this algorithm. FunLookup is used to map names of
functions to their corresponding FunDef. CurFun is used to keep a reference to the
FunDef we are currently inside. CalledBy is used to accumulate a set of callees for a
given function name.



Strategic Graph Rewriting 105

The algorithm works as follows. First, we replace every FunDef n node with a
reference to n, and record the function name in the FunLookup rule set. This is done
by add-refs. Second, we do a downup traversal, where the current function is kept in
the dynamic rule CurFun on the way down. On the way up, we add a reference to the
destination FunDef f for any Call encountered, and register the current function in the
CalledBy set for f . This is the first part of add-call-markers. Third, we place the
callee sets collected in the CalledBy dynamic rule set on the corresponding FunDefs,
finally obtaining a bidirectional call graph.

3.3 Flow Graphs

Flow graphs are used to represent the control flow of a program, analogously to the way
use-def chains represent data flow. Flow graphs, along with use-def chains, are at the
heart of many flow-sensitive optimizations, such as constant folding, loop optimization,
and jump threading. We can compute a flow graph from the various statements in the
AST as follows. In If(c,t,e ), flow goes from the condition c to both branches, t and
e, which in turn go to the successor block of if. In While(c,b ), flow goes from the
condition c to the body b, and from c to the successor block. The body b always flows
back to the condition c. All other statements correspond to basic blocks: the flow from
one statement goes directly to the successor block.

We show a three pass algorithm, ast-to-flow-graph. First, we do rewrites of
control flow constructs locally, as described above, with the MarkControlFlow rule
set. In the case of If and While, temporary FlowT blocks are inserted with dummy
references, since the successor block is not known locally yet. Second, AST statement
blocks are split into basic blocks, with SplitBlocks. Each non-control statement is
rewritten to a Flow block. Third, the FlowT blocks are connected to the Flow blocks
produced in (2), and rewritten to Flow, resulting in a flow graph, as seen in Fig. 1(e).

ast-to-flow-graph = bottomup(try(MarkControlFlow))

; bottomup(try(SplitBlocks))

; wbottomup(try(\ FlowT(x,y) -> Flow(x,y) \))

SplitBlocks: Block(xs) -> r where

<map(?FlowT(_,_) <+ {r: \ t -> Flow(t, r) where !r~() \})> xs => xs’

; foldr(\ (f@Flow(t1, n), t2) -> f where !n~t2 \

<+ \ (f@FlowT(t1, n), t2) -> f where !n~t2 \ |None)

; <Hd> xs’ => hd ; !r~hd

MarkControlFlow: If(cond, thn, els) -> FlowT(If(cond’, thn’, els’), next)

where !next~(); ; !thn’~Flow(thn,[next])

; !els’~Flow(els,[next]); !cond’~Flow(cond,[thn’, els’])

MarkControlFlow: While(cond, body) -> FlowT(r, next)

where !body’~(); !next~(); !cond’~Flow(cond, [next, body’])

; !body~Flow(body, [cond’]); !r~While(cond’, body’)



106 Karl Trygve Kalleberg and Eelco Visser

4 Graph Algorithms and Applications

In this section, we show how some basic graph algorithms can be implemented using
the reference mechanism we have described in Sec. 2.

Depth First Search Our depth first search implementation works on graphs where each
node is a term. The algorithm takes two parameters, l and es. es will be used to com-
pute the outgoing edges from each node. dfs keeps track of the current depth during
visits. On a visit to a node, the strategy l will be called with the current depth value as
parameter, so that it can be used to compute the label for the current node, or for other
transformations.

dfs(l : a * a -> a, es) = phase(wall(dfs(l, es | 0)))

dfs(l : a * a -> a, es | n) =

wrap-phase-ref(where(es => edges)

; where(l(|n) => label)

; where(<wall(dfs(l, es | <inc> n))> edges) ; !label)

The traditional depth first search, as described in for example [4], is applied initially to
the set V of a graph G = (V,E). We get the same behavior by applying dfs to a list
of references to all nodes in the graph. We will demonstrate the use of the dfs strategy
next, when we discuss strongly connected components.

Strongly Connected Components The basic algorithm for strongly connected compo-
nents (SCC) is also described in [4], and consists of four steps: First, call DFS(G) to
compute finishing times f[u] for each vertex u. Second, compute GT=transpose(G).
Third, call DFS(GT), but in the main loop of DFS, consider the vertices in order of de-
creasing f[u]. Fourth, produce as output the vertices of each tree in the DFS forest
formed in point 3 as a separate strongly connected component.

In our implementation of SCC, shown below, we avoid actual graph transposition
by requiring one strategy, es for computing forward edges from a node, and another,
res, for computing reverse edges. We also combine the third and fourth step by using a
modified dfs, called, dfs-collect, which collects each set of SCCs into a list during
the third step.

dfs-collect(l : a * a -> a, es) =

phase(all({|C: dfs-collect(l,es|0) ; bagof-C|}))

dfs-collect(l : a * a -> a, es | n) = ?r~_

; wrap-phase-ref(where(es => edges) ; where(l(|r) => label)

; where(<all(dfs-collect(l, es | <inc> n))> edges) ; !label)

sort-fundefs =

sort-list(LSort(where((?r;!^r; FinishTime,?r’;!^r’; FinishTime); gt)))

collect-components(|r) = rules(C :+ _ -> r)

inc-time = (Time <+ !0) => n ; where(inc => n’; rules(Time: _ -> n’))

time-count(|n) = ?x; where(inc-time => n’); rules(FinishTime: x -> n’)



Strategic Graph Rewriting 107

scc(l : a * a -> a, es, res) = {|FinishTime, Time:

dfs(l, es)

; sort-fundefs

; dfs-collect(collect-components, res)

; filter(not(?[])) |}

The current time is maintained in the Time dynamic rule, and the finishing time in
FinishTime. Our scc should normally be called with the time-count strategy as its
first argument, but the user is free to adapt this.

4.1 Finding Mutually Recursive Functions

Suppose we want to use SCC to compute sets of mutually recursive functions. Then,
each node in the graph is a function f . The outgoing edges of f are references to the
functions called by f . The incoming edges of f are references to the functions calling f .
This graph is what was computed by call-graph, discussed in Sec. 3.2. The following
strategies may used for edge computations.

calls-as-outbound = collect(\ Call(_,_,x) -> x \)

calledby-as-outbound = collect(\ FunDef(_,_,_,x,_) -> x \) ; concat

Applying scc(time-count, calls-as-outbound, calledby-as-outbound) to
a list of references to all functions in a program, say Fig. 1(d), will produce the cliques
(a, b, e), (f, g) and (c, d, h).

4.2 Lazy Graph Loading

Instead of binding terms to references, strategies may be bound instead. When a refer-
ence r with the strategy s bound to it is dereferenced, s is invoked, and the resulting
term is taken as the term value for r. We call this an active reference since it has a
strategy (i.e., function) attached to it that is activated and executed upon dereference.
Active references are useful for term (graph) rewriting of larger terms, especially when
doing sparse analyses on larger bodies of program code. With active references, terms
for programs can be loaded as skeletons. For example, all bodies of functions or classes
may be left out, and be parsed and loaded, or even generated, on demand.

5 Implementation

We have implemented a prototype of the language extension described in this paper.
Our implementation is a conservative extension to the existing Stratego infrastructure:
Every valid Stratego program retains its behavior and terms without references are still
represented entirely as ATerms. References are introduced as a special kind of term,
Ref, and we have modified the language implementation to recognize and treat terms of
this type specially. Refs are closely related to pointers, as found in C, and to references,
as found in Java. Unlike pointers and Java references, a Stratego Ref always starts out as
bound. It may subsequently be rebound to another term. The bindings from references
to terms are maintained in a global table, or more precisely, in a global, dynamic rule
set. When a new reference is bound, a new rule is added to the set. When an existing



108 Karl Trygve Kalleberg and Eelco Visser

reference is rebound, its corresponding rule is changed. Using dynamic rule sets aids in
implementing backtracking behavior. For left- and guarded choice, references rebound
or introduced by a failed strategy should be backtracked before the program proceeds.
This is implemented in our compiler by rewriting every left choice operator to

start-ref-cs ; s1 ; commit-ref-cs <+ discard-ref-cs ; s2

Here, start-ref-cs will make a change set for the global rule set. If s1 succeeds, the
change set is committed and changes are kept. If s1 fails, all changes to the reference
rule set by s1 are undone.

Managing the revisitation of references in term graphs is crucial for ensuring termi-
nation. The wrap-phase-ref mentioned earlier is responsible for this.

wrap-phase-ref(s) = ?r@Ref(_) < seen-before < id

+ where(<phase-deref> r; s; bind-ref(|r)) + s

wrap-phase-ref is implemented using guarded choice s1 < s2 + s3, which works
as follows. If s1 succeeds, s2 will be applied to the resulting term. If it fails, s3 will be
applied to the initial term. If wrap-phase-ref(s) is applied to term, s is applied and
we are done. When at a reference r, we first use seen-before to check if we have seen
r before. If so, we ignore s (by applying id, then returning). If not, r is dereferenced and
marked, using phase-deref, s is applied to its term, and r is rebound by bind-ref.

Using wrap-phase-ref, we can now implement new traversal primitives on refer-
ences. Let us consider wall(s):

wall(s) = is-ref

< wrap-phase-ref(all(wrap-phase-ref(s))) + all(wrap-phase-ref(s))

If we are not at a reference, all will be applied to the current term and any refer-
ences it has as direct subterms will be marked. If we are at a reference, we will mark,
transform then rebind it. The markers used by wrap-phase-ref can be managed using
phase(s), given next:

phase(s) = where(local-phase-ctr => pc; inc-phase-ctrs)

; start-seen-cs; s; discard-seen-cs

; where(restore-local-phase-ctr(|pc))

phase(s) works as follows: Before s is applied, a new, unique, internal phase marker
is produced using local-phase-ctr, then the counter is increased, preparing for the
next invocation. start-seen-cs enters a new “scope” for this marker. The counter is
maintained in a dynamic rule defined inside increase-phase-ctrs, and is later used
by phase-deref and seen-before. Once s completes, all markers will be discarded.

Our implementation has not yet been tuned for performance. While we have used
Stratego’s dynamic rules for implementation convenience, we only rely on the ability of
dynamic rules to provide hash tables with change sets. In the current implementation,
reference lookup time is linear in the depth of choices on the stack. A more efficient
implementation of hash tables with change sets is likely to improve performance.



Strategic Graph Rewriting 109

6 Related Work

Term graph rewriting theory is an active field. For an introduction and summary, see [12].
A calculus for rewriting on cyclic term graphs has been proposed in [1]. Many systems
exist for general graph rewriting, such as PROGRES [13] and FUJABA [10]. Few term
graph rewriting systems for practical applications exist. HOPS [8] and Clean [11] are
a notable exceptions. Claessen and Sands [3] describe an extension to the Haskell lan-
guage which adds references with equality tests. Their goal is to better describe circuits,
which are graph structures with cycles, in a purely functional language. Their refer-
ences are immutable once created, unlike ours, making rewriting more difficult express.
Lämmel et al [9] discusses how strategic programming relates to adaptive program-
ming, a technique found in aspect-oriented systems for traversing object structures.
They show how traversal strategies may be implemented for cyclic structures, such as
graphs, by keeping record of visited nodes. Our phased traversals expand upon this
by allowing nested, overlapping traversals and fine-grained control of visitation mark-
ing. Our implementation shares some features with monadic programming. Monads are
sometimes described as patterns for using functions to transmit state without mutation,
and are described by Wadler [15]. In our implementation, dynamic rules are the func-
tions used to transmit the state, namely the internal graph references. Some functional
languages, such as Clean [11], are implemented as rewriting systems with implicit term
graphs. Functions in Clean are graph rewrite rules on the underlying term graph. In
our language, the choice between term and term graph rewriting and their correspond-
ing tradeoffs is not fixed, but rather left to the programmer. An important goal for our
language extension is to better capture graph-like program representations, and to of-
fer convenient transformation capabilities for these. Many excellent and general graph
libraries exist, and we are not aiming to replace these.

To the best of our knowledge, no other term graph rewriting system supports strate-
gic term graph rewriting, using rewriting strategies and generic traversals.

7 Discussion and Further Work

The construction of use-def chains, call- and flow graphs shows how global-to-local
problems are now local-to-local, as the remote context is available locally for rules
to match on. The addition of references for this purpose also introduces the problem
of traversal non-termination in the presence of cycles. We have shown how this can
be managed by phases. Another issue of term references is the unexpected impact of
reference rebinding, in the loss of referential transparency. The code !Sub(r~Int(2))
=> v ; !r~Int(3) will alter the value of v after it is bound. Judicious use of duprefs
can control this. Comparison of term graphs is currently done using weak equality; i.e.,
comparison references in terms is done based on identity, not structure, which allows
constant time comparison. Deep comparison is available through the library, and is
linear in the size of the term graphs. The pattern-based language constructs introduced
in this paper for reference manipulation came about after trying to program with only
the primitive operators create reference, bind reference and dereference. While these
primitives are still at the heart of the implementation, the notation presented in this paper



110 Karl Trygve Kalleberg and Eelco Visser

make them more convenient to use. Further exploration of the design space is warranted.
One attractive extension is matching modulo references, which allows term patterns to
be matched directly on terms with references, by implicitly visiting references during
matching.

8 Conclusion

We have presented the design and implementation of an extension to the Stratego term
rewriting language for rewriting on terms with references, and demonstrated its practi-
cal application through the construction of several common graph-based program repre-
sentations found in compilers. The contributions of this paper include the introduction
of language abstractions for dealing with references within a rule-based term rewrit-
ing language, a demonstration of how term matching, building and rewrite rules can
be combined with term references, how benefits of generic term traversal can be kept
by using phased traversals to deal with non-termination due to cyclic graphs, and how
backtracking can be combined with destructive graph updates to retain the strategic pro-
gramming flavor of Stratego. We showed how our language can be used to implement
some basic graph algorithms and how these can be applied to graph-based program rep-
resentations. We discussed design tradeoffs related to introducing references in terms,
including traversal termination and impact of reference binding.

References

1. C. Bertolissi. The graph rewriting calculus: properties and expressive capabilities. Thèse
de doctorat, Institut National Polytechnique Lorrain - INPL, Oct. 2005.

2. M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Stratego/XT 0.16: Components
for transformation systems. In F. Tip and J. Hatcliff, editors, PEPM’06: Workshop on Partial
Evaluation and Program Manipulation, January 2006.

3. K. Claessen and D. Sands. Observable sharing for functional circuit description. In ASIAN
’99: Proceedings of the 5th Asian Computing Science Conference on Advances in Computing
Science, pages 62–73, London, UK, 1999. Springer-Verlag.

4. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press,
1997.

5. M. G. T. V. den Brand, H. A. de Jong, P. Klint, and P. A. Olivier. Efficient annotated terms.
Softw. Pract. Exper., 30(3):259–291, 2000.

6. P. Johann and E. Visser. Fusing logic and control with local transformations: An example
optimization. In B. Gramlich and S. Lucas, editors, Workshop on Reduction Strategies in
Rewriting and Programming (WRS’01), volume 57 of Electronic Notes in Theoretical Com-
puter Science, Utrecht, The Netherlands, May 2001. Elsevier Science Publishers.

7. P. Johann and E. Visser. Strategies for fusing logic and control via local, application-specific
transformations. Technical Report UU-CS-2003-050, Institute of Information and Comput-
ing Sciences, Utrecht University, February 2003.

8. W. Kahl. The term graph programming system HOPS. In R. Berghammer and Y. Lakhnech,
editors, Tool Support for System Specification, Development and Verification, Advances in
Computing Science, pages 136–149, Wien, Mar. 1999. Springer. ISBN: 3-211-83282-3.

9. R. Lämmel, E. Visser, and J. Visser. Strategic Programming Meets Adaptive Programming.
In Proceedings of the 2nd International Conference on Aspect-Oriented Software Develop-
ment (AOSD 2003), pages 168–177, Boston, MA, 2003. ACM Press.



Strategic Graph Rewriting 111

10. U. Nickel, J. Niere, and A. Zundorf. Tool demonstration: The FUJABA environment. In The
22nd International Conference on Software Engineering (ICSE). ACM Press, 2004.

11. M. Plasmeijer and M. van Eekelen. Language report: Concurrent Clean. Technical Report
CSI-R9816, Computing Science Inst., U. of Nijmegen, Nijmegen, The Netherlands, 1998.

12. D. Plump. Essentials of term graph rewriting. Electr. Notes Theor. Comput. Sci., 51, 2001.
13. A. Schürr. The PROGRES Language Manual Version 9.x. Lehrstuhl für Informatik III,

RWTH Aachen, Aachen, Germany, 2004.
14. E. Visser and Z.-e.-A. Benaissa. A core language for rewriting. In C. Kirchner and

H. Kirchner, editors, Second International Workshop on Rewriting Logic and its Applica-
tions (WRLA’98), volume 15 of Electronic Notes in Theoretical Computer Science, Pont-à-
Mousson, France, September 1998. Elsevier Science Publishers.

15. P. Wadler. The essence of functional programming. In POPL ’92: Proceedings of the 19th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 1–14,
New York, NY, USA, 1992. ACM Press.



Author Index

Alves, Sandra 20

Cirstea, Horatiu 80

Faure, Germain 80

Fernández, Maribel 20, 80

Florido, Mario 20

Hidalgo-Herrero, Mercedes 64

Kalleberg, Karl Trygve 96

Kieburtz, Richard B. 1

Kirchner, Claude 2

Mackie, Ian 20, 80

Mizutani, Tomohiro 34

Nishida, Naoki 34

Ortega-Mallén, Yolanda 64

Sacerdoti Coen, Claudio 3

Sakai, Masahiko 34

Sinot, François-Régis 80

Verdejo, Alberto 64

Visser, Eelco 96

van Weerdenburg, Muck 49

112


