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Abstract. Recent advances in the foundations and the development of func-
tional logic programming languages originate from far-reaching results on nar-
rowing evaluation strategies. Narrowing is a computation similar to rewriting
which yields substitutions in addition to normal forms. In functional logic pro-
gramming, the classes of rewrite systems to which narrowing is applied are, for
the most part, subclasses of the constructor-based, possibly conditional, rewrite
systems. Many interesting narrowing strategies, particularly for the smallest sub-
classes of the constructor-based rewrite systems, are generalizations of well-
known rewrite strategies. However, some strategies for larger non-confluents sub-
classes have been developed just for functional logic computations. In this paper,
I will discuss the elements that play a relevant role in evaluation strategies for
functional logic programming, describe some important classes of rewrite sys-
tems that model functional logic programs, show examples of the differences in
expressiveness provided by these classes, and review the characteristics of nar-
rowing strategies proposed for each class of rewrite systems.

1 Introduction

Functional logic programming studies programming languages that join in a sin-
gle paradigm the features of functional programming and logic programming.
For the most part, a functional logic program can be seen as a constructor-based
conditional rewrite system (TRS). In the examples, I take several liberties with
the notation.

Example 1.The following program solves the well-knownN-queensproblem:

queens X -> Y :- Y=permute X, void(capture Y)

permute [] -> []

permute [X|Xs] -> U++[X]++V :- U++V=permute Xs
capture Y :- -++[Y1]++K++[Y2]++-=Y, abs(Y1-Y2)=length K+1
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TRSs are first-order languages, but in this paper the notation for function and
constructor application is curried as usual in functional programming. A condi-
tional rewrite rule has the form:

l→ r :− t1 = u1, . . . , tn = un

wherel andr are the left- and right-hand sides, respectively, and the condition is
a sequence of elementary equational constraints of the formti = ui. The symbol
“=” is interpreted as strict equality. The program adopts the familiar Prolog
notation for lists and variables and uses common infix arithmetic operators, but
this is only syntactic sugar.Abs, which stands for integer absolute value, and
++ andlength, which stand for list concatenation and length, are assumed to be
library functions.Capture is aconstraint, i.e., a function that, similar to a Prolog
predicate, “succeeds” iff its condition succeeds.Void is a primitive construct
that succeeds iff its argument is a constraint with no solution. A query of the
form, e.g.,queens [1,2,3,4] non-deterministically computes a solution of the
4-queensproblem.

To understand the promise of functional logic programming languages, it is
instructive to compare the above program with textbook examples of both func-
tional and logic programs proposed for the same problem. All the programs,
including ours, are structured as a generate-and-test pattern. The generator gen-
erates a permutation of the rows of the chess-board. Then-th element of the per-
mutation represents the placement on the chess-board of the queen in columnn.
An efficient solution should avoid, e.g., the complete generation of(n−1)! per-
mutations that start with an incorrect initial placement when a single test would
suffice.

The pure logic version [21, pages 132–135] is complicated by the need to
generate potential solutions incrementally and test them before generating the
next increment. This prevents the use of library predicates, e.g., to compute
permutations, and makes the code of this program specific to this problem and
non-reusable. The pure functional version [10, pages 161–165] is complicated
both by the presence of data structures, such as a list of lists that (lazily) holds
the entire set of permutations, or a list of pairs that eases the test of the safety
of a placement, and by the presence of functions that construct and take apart
these structures.

The functional logic version is textually shorter and conceptually simpler.
For example, generator and tester are functionally nested and lazily executed
and there are no bookkeeping and control data structures. Key factors that con-
tribute to this simplicity and are unavailable in either the functional or the logic
program are: (1)non-determinism, e.g., operationpermute computes one of
the many permutations of its argument, (2)semantic unification, e.g., the vari-

2



ables in the constraint(U++V=permute Xs) are instantiated, if possible, to sat-
isfy the equation, and (3)functional inversion, i.e., the possibility to compute
a value for some argument(s) of a function from a result, e.g., the expression
(-++[Y1]++K++[Y2]++-) is used to extract, lazily and non-deterministically, sub-
lists from a list rather than to concatenate them.

The increased expressive power of functional logic programs pose heav-
ier demands on their execution. These demands involve two specific aspects
of computations: (1) modern functional logic programs are mostly executed by
narrowing, a computation that generalizes both ordinary functional evaluation
and resolution and (2) the classes of TRSs modeling functional logic programs
are more general than those modeling functional programs, e.g., our initial ex-
ample includes non-deterministic operations, such aspermute, and extra vari-
ables, such asU, V andK. In this paper, I discuss some classes of TRSs proposed
for functional logic programming and suitable evaluation strategies for these
classes. Section 2 reviews narrowing as the computation of functional logic pro-
grams. Section 3 defines and compares various fundamental classes of TRSs
proposed to model functional logic programs and, for each class, presents an
evaluation strategy. Section 4 briefly discusses some extensions to the previous
classes and related issues. Section 5 contains the conclusion.

2 Narrowing

This section briefly recalls basic notions of term rewriting [8, 11, 17] and func-
tional logic programming [13].

A rewrite systemis a pair,R = 〈Σ,R〉, whereΣ is a signatureandR
is a set ofrewrite rules. SignatureΣ is many-sortedand is partitioned into a
setC of constructorsymbols and a setF of defined operationsor functions.
TERM(Σ ∪ X ) is the set oftermsconstructed overΣ and a countably infinite
setX of variables. TERM(C ∪ X ) is the set ofvalues, i.e., the set of terms
constructed overC andX . Var(t) is the set of the variables occurring in a term
t.

A pattern is a term of the formf(t1, . . . , tn), n > 0, wheref ∈ F and
t1, . . . , tn are values. Anunconditional rewrite ruleis a pairl→ r, wherel is a
linear pattern andr is a term. Traditionally, it is required thatVar(r) ⊆ Var(l).
This condition is not imposed here since it appears unnecessarily restrictive for
functional logic computations. An unconditional TRS,R, defines a rewrite rela-
tion→R on terms as follows:s→p,R t if there exists a positionp in s, a rewrite
ruleR = l → r with fresh variables and a substitutionσ with s|p = σ(l) and
t = s[σ(r)]p. The instantiated left-hand sideσ(l) of a rewrite rulel → r is
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called aredex(reducibleexpression). Given a relation→,
+→ and

∗→ denote its
transitive closure and its transitive and reflexive closure, respectively.

A conditional rewrite rule is of the forml → r :− c, wherel andr are
defined as in the unconditional case andc is asequence of elementary equational
constraints, i.e., pairs of terms of the formt = u. The definition of the rewrite
relation for conditional TRSs is fairly more complicated than for unconditional
TRSs. The classic approach to conditional rewriting is discussed in [9].

A left-linear, conditional, constructor-based TRS is a good model for a func-
tional or a logic program. Computations are (expressed by) operation-rooted
terms ultimately applied to values.

Example 2.In programming languages, values are introduced by data type dec-
larations such as:

data bool = true | false

data list a = [] | [a | list a]

and operations are defined by rewrite rules such as those of Example 1. Identi-
fierstrue andfalse are the familiar Boolean constants.[] (empty list) and[·|·]
(non-empty list) are the constructors of the polymorphic type lists. Identifiera is
a type variable ranging over all types. A value ordata termis a well-formed ex-
pression containing variables, constants and data constructors, e.g.,[x,y] which
stands for[x|[y|[]]].

The fundamental computation of functional logic languages isnarrowing.
A terms narrowsto t with substitutionσ, denoteds σ t, if σ is an idempotent
constructor substitution such thatσ(s) → t. A terms such thatσ(s) is a redex
is called anarrex (narrowableexpression). Traditionally, it is required that the
substitution of a narrowing step is a most general unifier of a narrex and a rule’s
left-hand side. This condition is not imposed here since narrowing with most
general unifiers can be suboptimal [6]. Acomputationor evaluationof a term
s is a narrowing derivations = t0  σ1 . . .  σn tn = t, wheret is a value.
Substitutionσ1 ◦ · · · ◦ σn is called acomputed answerandt is called acom-
puted valueof s. Computing narrowing steps, in particular narrexes and their
substitutions, is the task of astrategy.

Example 3.The following rewrite rules define the concatenation and the strict
equality of the type list. The infix operation “&” is the constraint conjunction.
Identifiersuccess denotes a solved constraint. It is explicitly represented in this
paper to define computations using only rewrite rules, but with an appropriate
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syntax it could be eliminated from programs. In practice, strict equality would
be a built-in operation of a functional logic language run-time system.

[] ++ X -> X R1

[X|Y] ++ Z -> [X | Y++Z] R2

[] = [] -> success R3

[X|Xs] = [Y|Ys] -> X=Y & Xs=Ys R4

success & X -> X R5

The execution of the program of Example 1 requires the solution of constraints,
such asU++V=[2,3,4], which are solved by narrowing. A free variable may
have different instantiations. Consequently, expressions containing free vari-
ables may be narrowed to different results. Below is the initial portion of one
of several possible sequences of steps that solve the constraint, i.e., narrow it to
success and in the process instantiates variablesU andV. Both the rule and the
substitution applied in a step are shown to the right of the reduct:

U++V=[2,3,4]

 [U1|Us++V]=[2,3,4] R2, {U 7→ [U1|Us]}
 U1=2 & Us++V=[3,4] R4, {}
 success & Us++V=[3,4] Ri, {U1 7→ 2}
 Us++V=[3,4] R5, {}...

whereU1 andUs are fresh variables, andRi denotes some rule, not shown here,
of the strict equality of type integer. This solution instantiates variableU to a list
with head2.

A narrowing strategy is a crucial component of the foundations and the imple-
mentation of a functional logic programming language. Its task is the computa-
tion of the step, or steps, that must be applied to a term. In a constructor-based
TRS, a narrowing step of a termt is identified by a non variable positionp of
t, a rewrite rulel → r, and an idempotent constructor substitutionσ such that
t  p,l→r,σ s iff s = σ(t[r]p). Formally, a narrowing strategy is a mapping that
takes a termt and yields a set of triples of the form〈p, l → r, σ〉 interpreted as
narrowing steps as defined earlier.

Example 4.Continuing Example 3, a good narrowing strategy applied to the
constraintU++V=[2,3,4] computes the following two steps:〈1, R1, {U 7→ []}〉
and〈1, R2, {U 7→ [U1|Us]}〉. The first step yields a solution with answerU=[]

andV=[2,3,4]. The second step was shown earlier.

A narrowing strategy useful for functional logic programming must besound,
complete, andefficient. In the next definitions,t andu denote a term and a value,
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respectively, and all narrowing derivations are computed by the strategy subject
of the discussion. A strategy issoundiff t

∗
 σ u impliesσ(t) ∗→ u. A strategy

is completeiff σ(t) ∗→ u implies the existence a substitutionη 6 σ such that
t
∗
 η u

′ with u′ 6 u. Intuitively, both the soundness and the completeness of a
strategy are best understood when the initial term of a derivation is an equational
constraint containing occurrences of free variables. In this case, the soundness
of a strategy guarantees that any instantiation of the variables computed by the
strategy is a solution of the equation, and the completeness guarantees that for
any solution of the equation, the strategy computes another solution which is at
least as general.

Efficiency is a more elusive property. Two factors affect the efficiency of a
strategy: (1) unnecessary steps should not be computed, and (2) steps should be
computed without unnecessary resources. In both statements, the exact meaning
of “unnecessary” is difficult to formalize at best. Factor (1) is more related to
the theory of a strategy, whereas factor (2) is more related to its implementation,
although the boundaries of these relationships are blurred. The efficiency of a
strategy is somewhat at odds with its completeness. A naive way to ensure com-
pleteness is to compute all possible narrowing steps of a term, but in most cases
this would be quite inefficient since many of these steps would be unnecessary.

Similar to rewriting, different narrowing strategies have been proposed for
different classes of TRSs. Some efficient narrowing strategies are extensions of
corresponding rewrite strategies, whereas other narrowing strategies have been
developed specifically for classes of TRSs of interest to functional logic pro-
gramming and do not originate from previous rewrite strategies. Some of these
classes and their strategies are the subject of the next section.

3 Classes of TRSs

A key decision in the design of functional logic languages is the class of TRSs
chosen to model the programs. In principle, generality is very desirable since it
contributes to the expressive power of a language. In practice, extreme power
or the greatest generality are not always an advantage. The use of “unstruc-
tured” rewrite rules has two interrelated drawbacks: for the programmer it be-
comes harder to reason about the properties of a program; for the implementor
it becomes harder to implement a language efficiently. For these reasons, differ-
ent classes of TRSs potentially suitable for functional logic computations have
been extensively investigated. Figure 1 presents a containment diagram of some
major classes. All the classes considered in the diagram are constructor-based.
Rewrite rules defining an operation with theconstructor-discipline[20] implic-
itly define a corresponding function over algebraic data types such as those of
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Fig. 1. Containment diagram of rewrite systems modeling functional logic programs. The outer
area, labeledCB, represents theconstructor-basedrewrite systems. The smallest darkest area,
labeledIS, represents theinductively-sequentialrewrite systems. These are the intersection of
theweakly-orthogonal, labeledWO, and theoverlapping inductively-sequentialrewrite systems,
labeledOIS.

Example 2. Most often, this is well-suited for programming, particularly when
data types are abstract.

The discussion of this section is limited to first-order computations although
higher-order functions are essential in functional, and hence function logic, pro-
gramming. The following section will relax this limitation. The discussion of
this section is also limited to unconditional TRSs. Constructor-based TRSs can
be transformed into unconditional TRSs by a transformation that preserves both
values and computations without loss of either efficiency or generality. This also
will be addressed in the next section.

3.1 Inductively Sequential TRSs

The smallest class in the diagram of Figure 1 is theinductively sequentialTRSs.
These are the strongly sequential component of the constructor-based TRSs [14].
Optimal rewrite derivations for the strongly sequential TRSs are executed by the
well-know call-by-needstrategy [16]. Optimality, in this class, is the property
that every step of a call-by-need derivation isneededin the sense that the value
computed by the derivation, if it exists, cannot be reached unless the step is ex-
ecuted.Needed narrowing[6] is a conservative extensions of this strategy, i.e.,
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rewrite derivations executed by needed narrowing are call-by-need derivations.
In addition, needed narrowing offers a second optimality result concerning com-
puted answers. Narrowing is non-deterministic, thus a term may have several
distinct derivations each computing a substitution and a value. The substitutions
computed by these derivations are pair-wise disjoint [6, Def. 15]. This implies
that every needed narrowing derivation computing a value isneededin the sense
that the substitution computed by one derivation cannot be obtained by any other
derivation.

The inductively sequential TRSs were initially characterized through the
concept of definitional tree [2]. Since definitional trees are frequently used to de-
fine and implement narrowing strategies for several subclasses of the construct-
or-based TRSs, I recall this concept. Adefinitional treeof an operationf is a
finite, non-empty setT of linear patterns partially ordered by subsumption and
having the following properties up to renaming of variables:

– [leaves property] The maximal elements, referred to as theleaves, of T are
all and only variants of the left hand sides of the rules definingf . Non-
maximal elements are referred to asbranches.

– [root property] The minimum element, referred to as theroot, of T is
f(X1, . . . , Xn), whereX1, . . . , Xn are fresh, distinct variables.

– [parent property] Ifπ is a pattern ofT different from the root, there exists
in T a unique patternπ′ strictly precedingπ such that there exists no other
pattern strictly betweenπ andπ′. π′ is referred to as theparentof π andπ
as achild of π′.

– [induction property] All the children of a same parent differ from each other
only at the position, referred to asinductive, of a variable of their parent.

Example 5.Consider an operation,take, that returns a prefix of a list. For the
purpose of this discussion, the natural numbers are represented in Peano nota-
tion.

data nat = 0 | s nat

take 0 - -> []

take (s N) [] -> []

take (s N) [X|Xs] -> [X | take N Xs]

The definitional trees of operation++ defined in Example 3 and operationtake
just defined are shown below. Lines join patterns in the parent-child relation.
The inductive variable of a parent is boxed. The leaves are variants of the rules’
left-hand sides.
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X ++ Y

��������

????????

[] ++ Y [X1|Xs] ++ Y

take N X

��������

???????

take 0 X take (s N1) X

��������

????????

take (s N1) [] take (s N1) [X1|Xs]

A TRS is inductively sequential iff all its operations have a definitional tree.
Needed narrowing is defined through definitional trees that are used as finite
state automata to compute narrowing steps. I give an informal account of this
computation in an example. The formal definition is in [6, Def. 13].

Example 6.Needed narrowing computes a step of a termt rooted bytake, i.e.,
t = take n x, as follows. Letπ be an element of the definitional tree oftake

that unifies witht and letσ be the unifier. Ifπ is a leaf, thent is a narrex and
σ is the substitution of the step. Ifπ is a branch andp is the position of its
inductive variable, thent|p is rooted by some operationf . Using a definitional
tree off , the strategy computes a needed step ofσ(t|p), say〈q, l→ r, η〉. Then,
〈p · q, l→ r, σ ◦ η〉 is a needed step oft.

To make all this more concrete, suppose thatt = take N [1]++[2], where
N is a free variable. Termt unifies with bothtake 0 X, which is a leaf, and
take (s N1) X, which is a branch. Therefore, needed narrowing computes the
two steps shown below. Each steps is shown with its substitution.

take N ([1]++[2])  {N 7→0} []

take N ([1]++[2])  {N 7→(s N1)} take (s N1) [1|[]++[2]]

Observe that the substitution of the second step is not most general. This char-
acteristic of needed narrowing is a major departure from previously proposed
strategies. UnlessN is instantiated to(s N1), the step could turn out to be use-
less, e.g., when followed by a step instantiatingN to 0.

3.2 Weakly Orthogonal TRSs

The weakly orthogonal TRSs are a proper superclass of the inductively sequen-
tial TRSs. Rewrite rules in this class can overlap, but only if their corresponding
critical pairs are trivial (syntactically equal). Rules’s left-hand are patterns and
consequently they can overlap only at the root. Therefore weakly orthogonal
constructor-based TRSs are almost orthogonal. Computations in this class are
sometimes referred to as parallel, and so implemented, although this class ad-
mits sequential normalizing rewrite strategies, as well. Optimal rewrite deriva-
tions for the weakly orthogonal constructor-based TRSs are executed by repeat-
edly contracting all the redexes of anecessary set[22]. This notion generalizes
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that of needex redex, which is undefined in this class. Optimality, in this class,
is the property that the value computed by a derivation, if it exists, cannot be
reached unless one redex in a necessary set is contracted. In general, no efficient
procedure is known to determine this redex.

Example 7.An emblematic non-inductively sequential operation in this class is
theparallel-or defined by the rules:

or true - -> true R6

or - true -> true R7

or false false -> false R8

Termor (or true u) (or v true) has no needed redex regardless of termsu
andv.

Weakly needed narrowing[5] is a conservative extension of the strategy defined
in [22]. This strategy is formulated by means of definitional trees as well.

The rewrite rules defining an operation in a weakly orthogonal TRSs can
be partitioned into inductively sequential subsets, i.e., subsets for which there
exists a definitional tree. For the rules of Example 7, one such partition is
{R6, R8} ] {R7}. Then, a necessary set of redexes is obtained by computing a
needed redex for each element of a partition. This rewrite strategy, formalized
in [2], is equivalent to [22]. Its extension to narrowing is straightforward, but
the properties of a necessary set of narrexes differ from those of a necessary
set of redexes. The narrowing step computed by an element of the partition of
the rewrite rules may have a substitution incompatible with that of another step
and/or the position of a step may not be disjoint from that another step. Neither
condition may occur for rewrite steps.

Several related narrowing strategies dealing with these conditions are dis-
cussed in [5], but none claims the strong optimality results of [22]. However, all
these strategies are optimal for rewrite derivations, since they compute the same
steps as [22].

3.3 Overlapping Inductively Sequential TRSs

The overlapping inductively sequential TRSs are a proper superclass of the in-
ductively sequential TRSs. They are incomparable with the weakly orthogonal
TRSs. Rewrite rules in overlapping inductively sequential TRSs can overlap, but
only if their left-hand sides are equal modulo a renaming of variables. By con-
trast to the weakly orthogonal TRSs, no restriction is placed on the right-hand
sides of overlapping rewrite rules. Computations in this class are sometimes
referred to as non-deterministic.
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Example 8.The following operations define an alphabet (of digits) and the
(non-empty) regular expressions parameterized by a given alphabet. In this con-
text, the (meta)symbol “|” defines alternative right-hand sides of a same left-
hand side.

digit -> "0" | "1" | ... | "9"

regexp X -> X

| "(" ++ regexp X ++ ")"

| regexp X ++ regexp X

| regexp X ++ "*"

| regexp X ++ "|" ++ regexp X

The definition of operationregexp closely resembles the formal definition of
regular expression. Non-deterministic operations contribute to the expressive
power of a language. For example, to recognize whether a string, says, denotes
a well-formed regular expression over the alphabet of digits it simply suffices to
evaluate(regex digit = s). For parsing purposes, a less ambiguous definition
that also accounts for the usual operator precedence would be preferable, but
these aspects are irrelevant to the current discussion.

The evaluation strategy for overlapping inductively sequential TRSs isINS [3].
This strategy has been formulated for narrowing computations since its incep-
tion, i.e., it does not originate from an earlier rewrite strategy. In this class, every
term that can be narrowed to a value has a needed narrex. Since there may exist
several rewrite rules with the same left-hand side, a narrex may have several
replacements. Optimality, in this class, is the property that every step of anINS
derivation isneededin the sense that the value computed by the derivation, if
it exists, cannot be reached unless the narrex is contracted. However, not ev-
ery replacement of a needed narrex is needed, henceINS makes needed steps
modulo non-deterministic choices. In general, no efficient procedure is known
to determine which choices of replacements are needed.

Non-deterministic operations require re-thinking some semantic aspects of
both evaluation and strategies. For example, the meaning of the “=” operation is
generalized tojoinability, i.e.,t =u means thatt andu have a common value —
one out of possibly many. Another relevant issue is the step of a derivation in
which avalueis eventually bound to a variable. This is a subtle point, since the
value bound to the variable needs not be computed at that step. Two practical
examples clarify the issue.

Operationqueens, defined in the introduction, has a rule with three occur-
rences of variableY. VariableY is initially bound topermute X, which may
eventually be reduced to one of many values. Replacing each occurrence ofY

with permute X and evaluating each occurrence independently would be clearly
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incorrect. Thevalueof the occurrence returned by operationqueens could dif-
fer from that tested for safety using operationcapture. In this case, the intended
behavior, calledcall-timechoice semantics, is to bind the same value to all the
occurrences ofY.

Operationregexp, defined in this section, has rules with two occurrences
of variableX. VariableX is initially bound to a term, e.g.,digit, which may
eventually be reduced to a one-character string of a given alphabet. In this case,
however, the intended meaning is opposite. Unless the occurrences ofX bound
to digit are evaluated independently of each other, some regular expressions
would not be generated. In this case, the intended behavior, calledneed-time
choice semantics, is not to bind the same value to all the occurrences ofX.

In each case, the intended behavior depends on the program. A functional
logic language should allow the programmer to encode in a program the ap-
propriate semantics. A strategy for non-deterministic computations should have
useful properties, e.g., soundness and completeness, for both semantics.

3.4 Constructor-based TRSs

The constructor-based TRSs are the largest class that has been proposed for
modeling functional logic programs. They are a proper superclass of all the
other classes discussed previously. Overlapping of rules’s left-hand sides is un-
restricted, though in constructor-based TRSs it may occur only at the root. No
specific restrictions are imposed on the right-hand sides of overlapping rules.

Example 9.The following definition of operationpermute is an alternative to
that proposed in theN-queensprogram. Operationinsert does not belong to
any of the previously discussed classes of TRSs.

permute [] -> []

permute [X|Xs] -> insert X (permute Xs)

insert X Ys -> [X|Ys]

insert X [Y|Ys] -> [Y|insert X Ys]

An early narrowing strategy for this class is presented in [18]. That strategy is a
generalization to narrowing of a rewrite strategy proposed in [1]. The complete-
ness of both these strategies is unknown.

A potential difficulty of a class as large as the constructor-based TRSs is
that outermost rewrite strategies are not normalizing [4], hence outermost nar-
rowing strategies are not complete. All the strategies discussed in the previous
sections are outermost, a condition that simplifies reasoning about computations
and consequently proving their properties, e.g, completeness and optimality. For
example, consider the evaluation oft = insert u v. One cannot tell whether
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position 2 oft is needed. In fact, one must evaluate subtermv to apply one
rewrite rule ofinsert, but not apply the other rewrite rule. Both [1] and [18]
aredemand-driven, rather thanneeded, strategies which informally means the
following. A subtermv of a termt is evaluated if there is a ruleR potentially ap-
plicable tot that demands the evaluation ofv. However, the application ofR to
t may not be necessary for the whole computation in whicht occurs. Demand-
driven strategies inspire confidence in their completeness since they try to create
the conditions for the application of every possible rewrite rule to a term. They
can also be quite inefficient when the application of a rule to a term and/or the
evaluation of a subterm for the application of a rule are unnecessary.

Very recently, a transformational approach has been proposed [4] for func-
tional logic computations in the constructor-based TRSs. This approach trans-
forms a constructor-based TRS,R, into an overlapping inductively sequential
TRS,R′. Computations inR′ are executed byINSwhich sound, complete and
efficient. The transformation itself is sound and complete in the following sense.
The transformation adds new operation symbols, but no new constructors, to the
signature ofR′. The change in signature generally creates new steps and new
normal forms. However, any term built over the signature ofR is evaluated to
the same set of values by the rules of bothR andR′. Computations executed by
INSare optimal with respect to the rewrite rules ofR′, but not necessarily with
respect to the rewrite rules ofR.

4 Related issues

The previous sections have almost entirely neglected some important issues re-
lated to functional logic computations. I briefly address these issues in this sec-
tion. The focus, as in the rest of this paper, is on strategies.

The classes of TRSs discussed earlier are all unconditional. The well-known
outermost-fair rewrite strategy, which is normalizing for almost orthogonal
TRSs [20], is also normalizing for conditional almost orthogonal TRSs [9].
For the constructor-based TRSs, the results presented earlier about evaluation
strategies are extended to the conditional case with little effort. The strategies
discussed in Section 3 are based, either directly or indirectly, on definitional
trees. Definitional trees are concerned with the left-hand sides of rewrite rules
only. Therefore, strategies defined through definitional trees are somewhat in-
dependent of whether TRSs are conditional. An approach that takes advantage
of this consideration transforms anoriginal conditional TRS into atarget un-
conditional one without altering the left-hand sides of rewrite rules. In this way,
results proved for the target TRS are transferred to the original TRS. This trans-
formational approach is formalized in [4]. In short, the condition of a conditional
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rewrite rule is moved into the right-hand side by introducing a conditional oper-
ation. More precisely, a conditional rewrite rule of the form:

l→ r :− t1 = u1, . . . , tn = un

is transformed into:

l→ if t1 = u1, . . . , tn = un then r

where, as expected, theif · then · binary operation returns its second argument
when its first argument succeeds. The introduction of this new operation gen-
erally creates new steps and new normal forms, but not new values. The com-
putations to a value with the transformed rewrite rules remain essentially the
same.

A second relevant issue about functional logic programming concerns high-
order computations, a cornerstone of functional programming. Higher-order
functions, i.e., functions that take other functions as arguments, contribute to
the expressive power of a language by parameterizing computations over other
computations. A typical example is the functionmap, which applies some func-
tion to all the elements of list.

map - [] -> []

map F [X | Xs] -> [F X | map F Xs]

The difference with respect to previous examples is that the first argument of
map does not evaluate to a value, but to an operation.

The theory of higher-order rewriting is not as advanced as that of (first-
order) rewriting, thus not as much is known about rewrite strategies for higher-
order TRSs. However, the well-known outermost-fair rewrite strategy, which is
normalizing for almost-orthogonal TRSs [20], is normalizing also for weakly-
orthogonal higher-order TRSs if an additional condition, full extension, is im-
posed on higher-order rewrite rules [23]. The theory of higher-order narrowing
is even less developed. Similar to the first-order case, several classes of higher-
order TRSs have been proposed for higher-order functional logic computations,
e.g.,SFL programs [12],applicativeTRSs [19], andhigher-order inductively
sequential TRSs [15]. Different approaches have been adopted to prove prop-
erties of functional logic computations in these classes. Computations in SFL
programs are mapped to first-order computations by a transformation that ex-
tends to narrowing a well-know transformation for higher-order logic compu-
tations [24]. Computations in applicative TRSs are executed by acalculusthat
makes inference steps of a granularity finer than narrowing steps. Computations
in higher-order inductively sequential TRSs are executed using a generalization
of definitional trees.
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A significant difference between functional logic computations and func-
tional computations is that narrowing is capable of synthesizing functions. In
many cases, functions of this kind would be the result of a top-level computa-
tion. For example, solving the constraint:

map X [0,1,2] = [2,3,4]

would return, among other possibilities, the computed answer{X 7→ s ◦ s},
wheres is the constructor defined in Example 5. Most current implementations
of functional languages are not equipped to deal with this possibility. When the
result of a computation is a function, functional languages report so, but do not
identify in any expressive form which function. This design choice would seem
to indicate that higher-order results are not particularly interesting, at least in
functional programming. Narrowing considerably expands the power of func-
tional evaluations, but the feasibility and usefulness of computing higher-order
results has not yet been clearly established.

As in other situations, and for the same reasons, transformational approaches
have been proposed for higher-order computations as well. In short, terms with
partially applied symbols are transformed into terms built with new symbols in-
troduced for this purpose. Every symbol in a transformed term is fully applied.
The original idea [24] is formulated for functional evaluation in logic program-
ming, [12] generalizes it to narrowing, and [7] refines it by preserving type
information which may dramatically reduce the size of the narrowing space.
These approaches are interesting because they extend non-trivial results proved
for first-order strategies to the higher-order case with a modest conceptual effort.

5 Conclusion

This paper contains an overview of evaluation strategies for functional logic
programs. A program is (seen as) a constructor-based TRSs and an evaluation
or computation is a rewriting or narrowing derivation to a value — a constructor
normal form. Constructor-based TRSs are good models for programs because
they compute with functions defined over algebraic data types. Non constructor-
based TRSs are seldom used as programs.

I presented four subclasses of the constructor-based TRSs. Each subclass
captures some interesting aspect of computing, such as parallelism or non-de-
terminism. Computations in different classes are best accomplished by different
strategies. For each class, I presented a narrowing strategy and, in some cases,
the rewrite strategy from which it originates. When presented, the rewrite strat-
egy is normalizing, i.e., it computes the value, if it exists, of a term. In addition,
the narrowing strategy is sound and complete, i.e., when used to solve an equa-
tion it computes only and all the equation’s solutions. All these strategies are
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also, to varying degrees, theoretically efficient. Not surprisingly, as classes get
bigger the claims about the efficiency of strategies used for these classes get
weaker.

Finally, I considered two extensions of the constructor-based TRSs which
are important for programming: conditional and higher-order rewrite rules. Eval-
uation strategies for these extensions are not as well developed as for the ordi-
nary case. Transformations from extended TRSs to ordinary TRSs make it pos-
sible to use the strategies presented earlier while preserving many of their most
desirable properties.
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16. G. Huet and J.-J. Ĺevy. Computations in orthogonal term rewriting systems. In J.-L. Lassez
and G. Plotkin, editors,Computational logic: essays in honour of Alan Robinson, pages
395–443. MIT Press, Cambridge, MA, 1991.

17. J. W. Klop. Term Rewriting Systems. In S. Abramsky, D. Gabbay, and T. Maibaum, editors,
Handbook of Logic in Computer Science, Vol. II, pages 1–112. Oxford University Press,
1992.
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