A Transformation Tool for
Functional Logic Program Development

Sergio Antoy Michael Hanu$

1 Computer Science Dept., Portland State University, Oregon, U.S.A.
antoy@cs.pdx.edu

2 Institut fur Informatik, CAU Kiel, D-24098 Kiel, Germany.
mh@informatik.uni-kiel.de

Abstract. We present a tool to develop functional logic programs from their
specifications. Specifications of functional logic languages, i.e., actstin the
form of pre- and postconditions, are written in the same language as #ie fin
programs. Thus, contracts serve either as initial prototypical implemtie@mzor

as assertions to check the expected behavior of more efficient impiztioes.

We describe a tool that supports this software development processoq
can either instrument ordinary programs with run-time assertions olt&iom
declarative contracts or can transform declarative contracts intotypdatal im-
plementations.

1 Introduction

Ideally, software development follows a rigorous speciitza In practice, the situation
is quite different. Specifications often are non existem¢omplete, informal and/or
unintended because:

— Specifications cannot be easily mechanically processeacaHneir adequacy and
consequences are not fully understood.

— Specifications are a laborious step of the development psogbiich may not be
profitable without a significant commitment.

— Specifications could support proofs of program correctfi@smore reliable pro-
grams, but these proofs are difficult and seldom successful.

Some methodologies and tools to improve this situation batessuccess in specific ar-
eas such as embedded systems. For instance, wide-speatrgnages, such as CIP-L
[4], aim at developing an efficient program from a formal sfietion by means of
well-defined transformation steps so that a program is cbbng construction. How-
ever, this approach may prevent skilled programmers froraldping superior software
since the code must be obtained throughout a fixed set oftramation rules.

Specifications that are written in a declarative prograngnimguage are naturally
executable. This greatly extends their uses and makes thema jpnofitable because
they can be exploited in different forms:

* This work was partially supported by the DAAD grant D/08/11852.

— Executable specifications serve as initial prototypicgllementations.

— Executability allows experimentation which promotes ustinding and increases
the confidence that a specification captures the intent.

— When an implementation directly obtained from a specificaitotoo inefficient,
the specification can be executed to check, via run-timertimse, that a more
efficient implementation behaves as intended.

The possibilities sketched above become practical thraagts together with a lan-
guage and conventions to formulate specifications and obrtihem to the code they
specify.

As we will demonstrate in some examples, functional logiglzaages [3] are quite
appropriate for this purpose. The logic side, in particalamdeterminism, allows high-
level specifications of operations without concern for tthedficient implementation.
The functional side allows implementing efficient algomith [16]. This combination
produces a wide-spectrum language [4]. The tight integmadf specification and code
opens wide possibilities with simple tools. In particulae present a transformation
tool for functional logic programs that uses specificationsither of two ways. Specifi-
cations without a corresponding implementation serve @®typical implementations.
Specifications with a corresponding implementation sesveia-time assertions.

The language for our presentation is the multi-paradigntedatve language Curry
[13]. We assume familiarity with the general concepts oftfional logic programming
[3,10,11]. In the next section we review some notions ctdoiathis paper.

2 Functional Logic Programming and Curry

The multi-paradigm language Curry [13] amalgamates ingmirteatures from func-
tional programming (demand-driven evaluation, pararagboelymorphism, higher-
order functions) and logic programming (computing witht@information, unifica-
tion, constraints) in a single language. Curry has a Haskellsyntax¥ [17] extended
by the possible inclusion of free (logic) variables in cdimtis and right-hand sides
of defining rules. The operational semantics is based on timalpevaluation strategy
[1] which is a conservative extension of lazy functionalgnaimming and (concurrent)
logic programming.

Expressiongn Curry programs contaioperationgdefined functions);onstructors
(introduced in data type declarations), aratiables(arguments of operations or free
variables). The goal of a computation is to obtain a valueoofies expression, where
avalueis an expression that does not contain any operation. Natertta functional
logic language expressions might have more than one vakitochondeterministically
defined operations. For instance, Curry containka@ceoperation defined by:

X? _ =X
_?y=y
3 Variables and function names usually start with lowercase letters and tiesnaf type and

data constructors start with an uppercase letter. The applicatifriaof is denoted by juxta-
position (“f e”).

Thus, the expressiord* ? 1” has two valuesO and1. If expressions have more than
one value, one wants to select intended values accordirgnie sonstraints, typically
in conditions of program rules. Aule has the form f ¢;...¢, | ¢ = €” where

¢ is aconstraint i.e., an expression of the built-in ty@uccess . For instance, the
trivial constraintsuccess is a value of typeSuccess that denotes the always sat-
isfiable constraint. Thus, we say that a constrairg satisfiedif it can be evaluated
to success . An equational constraint; =:= e is satisfiable if both sides; and
eo are reducible to unifiable values. Furthermore; ifandc, are constraints;; & co
denotes their concurrent conjunction (i.e., both argungenstraints are concurrently
evaluated) and; &> ¢, denotes their sequential conjunction (i®.js evaluated after
the successful evaluation of).

With nondeterministic programming, it is sometimes uséfuéxamine the set of
all the values of some expression. A “set-of-values” openadpplied to an arbitrary
argument might depend on the degree of evaluation of theragt) which is difficult
to grasp in a non-strict language. Henset functiong2] have been proposed to en-
capsulate nondeterministic computations in non-strintfional logic languages. For
each defined functioif, fs denotes the corresponding set function. In order to be in-
dependent of the evaluation ordgg encapsulates only the nondeterminism caused
by evaluatingf except for the nondeterminism caused by evaluating thenaggts to
which f is applied. For instance, consider the operatlenOrinc defined by:

decOrinc x = (x-1) ? (x+1)

Then “decOrinc s 3” evaluates to (an abstract representation of) the{2e#},
i.e., the nondeterminism caused 8gcOrinc is encapsulated into a set. However,
“decOrinc s (2?5) " evaluates to two different setsl, 3} and {4,6} due to its
nondeterministic argument, i.e., the nondeterminism eadusy the argument is not
encapsulated. In this paper we use set functions to checknti® satisfiability of
constraints by testing the emptiness of the result sets thighpredefined operation
iIsEmpty .

3 Contracts and Assertions

A specification consists of a pre- and postcondition, aldledacontract for an oper-
ation. Contracts have been introduced in the context of iatjye and object-oriented
programming languages [15] to improve the quality of sofavd hepreconditionis an
obligation for the arguments of an operation applicatidme postconditions an obli-
gation for both the arguments of an operation applicatiahtha result of the operation
application to those arguments. Intuitively, the applaabr call to each operation must
satisfy its precondition, and, if the precondition is d&i$ and the operation returns a
result, this result must satisfy the postcondition. Whenrdremt is checked at run-time,
the pre- and postcondition are callassertions

In general, contracts can specify arbitrary propertiespdrations. For instance,
a type restriction on arguments and results can be conslidexe contract which is
checked at compile time in statically typed languages. Heweontracts can also be
used to specify the desired functionality of an operatioa jorecise manner. When a

pair of pre- and postcondition specifies all and only therideel arguments and the
intended results of an operation, respectively, the cohisacalled aspecification

Since functional logic languages encompass logic progragprinciples, they are
equipped to generate values satisfying the constraintggofesn program. We can ex-
ploit this property to execute a specification by generatialges satisfying the post-
condition of an operation. Obviously, this requires that flostcondition is expressed
as a functional logic program. This is not a serious resbriciue to the expressiveness
of functional logic languages, in particular, nondeterisrim and existentially quanti-
fied variables. Thus, our tool is based on source-to-sowmosformations of functional
logic programs.

We formalizecontractsas follows. Letf be an operation of type; — --- —
7, — 7 (n > 0). A preconditionfor f is a constraintf?"¢ of typer; — --- — 7, —
Success. A postconditiorfor f is a constrainyf?°s of typer; — -+ = 7, = T —
Success. An example follows.

Suppose that the problem is to develop an operasiont, , to sort a list of integers.
The type ofsort is:

sort :: [Inf] — [Inf]

The contract is shown below. Our tool assumes that the pipastcondition of an
operationf are calledf’pre andf’post , respectively.

sortpre :: [In] — Success
sortpre _ = success
sortpost :: [Int] — [Int] — Success

sortpost x y = (y == permute X) & sorted y

The precondition is trivially satisfied. The postcondit&tates that the result gbrt
is a permutation in ascending order of its input. These quiscre easily formalized:

permute] =1
permute (x:xs) = ndinsert x (permute Xs)
where
ndinsert x ys =X :Yys

ndinsert x (yiys) = y : ndinsert x ys

sorted] = success
sorted [] = success
sorted (Xyiys) = (x<=y)=:=True & sorted (y:ys)

Assume that this code is in a module cal®drt.curry . DSDCurry, the tool de-
scribed in Sect. 4, transforms it into a new module cafedtC.curry in which

pre- and postconditions provide a first implementatiosatt . This is triggered by
the fact thasort has not (yet) been coded. Hence, we are already able to ssirt a |

> dsdcurry -r Sort

SortC> sort [5,1,2,6,3]
Result: [1,2,3,5,6]

Now, for more efficient sorting, we codsrt using the well-known quicksort algo-
rithm. We extend modul8ort.curry with the following definition:

sort :: [Inf] — [Inf]

sort] =1

sort (xxs) = sort (filtter (<x) xs) ++ [X] ++
sort (filter (>x) xs)

DSDCurry applied to the extended module behaves differefitle pre- and postcon-
dition provide run-time assertions to check the behavighefnow implementedort
operation. The first test goes without a hitch.

> dsdcurry -+ Sort

SortC> sort [5,1,2,6,3]
Result: [1,2,3,5,6]

However, a further test shows a non-intended behavior:

SortC> sort [5,1,2,6,5,3]
ERROR: Postcondition of operation 'sort failed for:
[5,1,2,6,5,3] — [1,2,3,5,6]

After looking at (and maybe debugging) our implementatie, spot the error: we
forgot the elements equal to the pivot. Thus, we correctdberlile definingort :

sort (xxs) = sort (filtter (<x) xs) ++ [X] ++
sort (filter (>=x) xs)

and transform and execute the resulting program again:

SortC> sort [5,1,2,6,5,3]
Result: [1,2,3,5,5,6]

Other approaches that define assertions for functionak{lggograms (e.g., [7, 8, 12])
use Boolean functions as assertions. Constraints, indieaabre naturally into func-
tional logic programming. In particular, they are intendedjenerate values whereas
Boolean functions are used to check properties of givereglu

As our example shows, a contract provides either an impléatien of a yet to be
coded operation, or an assertion for an already coded aperdthe assertion checks
at run-time that an operation meets its obligations. The dase is implemented in a
functional logic language by applying the postconditioratouninstantiated variable,
as the following snippet shows (although the preconditsamivially satisfied and could
be omitted, we keep it around to show the general scheme):

sort xs | sortpre xs &> sortpost Xxs ys = ys
where ys free

The result argument of the postcondition is declared aseaviaeiableys, so that the
evaluation of the postcondition instantiates it with valtieat satisfy the postcondition.
The soundness and completeness of the functional logic etatipn ensure that all and
only the intended results gbrt are computed.

When the specification-based prototype is not efficient endagthe problem (in
our sorting example because the number of permutations of@list is too large),
the program is developed as usual by the programmer. In #isis, @ contract is used
to check whether the implementation produces the expeatgalib This requires to
answer the following questions:

1. Which result values should be taken into account?
2. How should the assertion check be operationally treated?

For the first question, remember that operations of a funatigic language might
have more than one result value. For instance, the operzgion (the name, somewhat
misleading, is suggested by the postcondition) defined by:

zero = 0?1
hasO or 1 as results. The postcondition:
zeropost x = X ==

states that the result ahyapplication ozero should be equal t0. Thus, it is not suf-
ficient that some result afero satisfies the postcondition—any computed result must
satisfy it. On the other hand, the postcondition might ateepre values than actu-
ally computed because postconditions may state weak ergaits rather than precise
specifications. For instance, a postcondition of the fatéunction may state that the
result should be a positive number without intending thepasitive numbers should
be produced by the factorial function.

Altogether, we check the pre- and postconditions for a unpgrationf as follows
(the generalization to multiple arguments is straightfmdy:

1. If fis called with some argument valuethe constrainf?"¢ x must be satisfiable.
2. If frre g is satisfiable ang’ = returns some valug, the constrainif?°st x y must
be satisfiable.

Thus, assertions will be implemented by exploring the caatjian spaces of P"¢ x
and frost ¢ y, for each call tof during run time. Whenever one of these computation
spaces is finite but does not contain any solution, an ageeiitblation is reported (and
the program terminates). As we will see, set functions aite dpandy to implement this
check.

A subtlety of laziness is that a function call might have angats and/or produce
results that are not fully evaluated. An approach is to atalihe arguments of pre-
and postconditions as much as needed to check an assentitiis tase, the pre- and
postconditions are treated sgict assertionsi.e., they are evaluated when the corre-
sponding operation is evaluated. This has the advantagadbartions are checked as
soon as they could detect a violation. However, this evednahight influence the op-
erational behavior of a program. For instance, consideipanation insert n xs "
that inserts an integer into a supposedly ascending list of integess The following
(weak) contract states that the input and output lists shoellordered:

insertpre _ xs = sorted xs
insertpost _ _ zs = sorted zs

Now consider the expression = head (insert 3 [1,2..]) . The standard
(lazy) strategy evaluatesto 1. If we check the assertions ofsert in a strict man-
ner, the program will not terminate due to the evaluatiorhefitfinite list[1,2..]
Moreover, assertion violations might be reported by sassertions, whereas the stan-
dard lazy evaluation of the program does not violate theserisns (see [12] for an
example).

To prevent assertions from influencing the behavior of a janog Chitil et al. [7]
proposedazy assertionshat do not enforce argument evaluation but are checked when
the argument expression has been evaluated by the appligatigram so far that the
assertion can be evaluated without further evaluationsadiigument. Thus, as long as
every assertion is satisfied, program executions with drawit lazy assertion checking
deliver the same results.

A disadvantage of lazy assertions is that if the assertignraents are not suffi-
ciently evaluated the assertion itself is not evaluatedcam$equently a violation is not
detected. For instancehéad (insert 3 [5,1]) " returns 3 without any asser-
tion violation if the contract is lazily checked, althoudtetprogrammer could assume
that the result is the minimal element of the inputs. Thuis debatable whether full
assertion checking should be avoided in order to keep thavilmhof programs [8,
12]. Lazy assertions do not modify the behavior, but a lagdynputed result cannot
be trusted as long as some assertion has not been checkedoApeomise between
these conflicting goals, [12] proposedforceable assertionglso called “faithful as-
sertions” in [12]). These assertions behave like lazy #isse; but they can also be
checked upon an explicit request of the programmer, e.¢heagnd of a program run
or at key intermediate execution points, e.g., before soraedcable action (deleting a
file, launching a rocket, etc) takes place.

Since there seems to be no silver bullet for assertion chgdkilazy languages, our
tool supports strict, lazy, and enforceable assertionsaothe programmer can select
the most appropriate method for a particular application.

4 The Tool

In this section, we discuss a transformation tool, DSDClyrigr the software devel-
opment approach sketched earlier. Basically, DSDCurrggas input a Curry module
M containing contracts for some operations and produces atwevy moduleM C
that extendsV/ in the following ways.M C' implements operations that are undefined,
but have a contract, in/. M C implements assertion checking for operations that in
M both are implemented and have a contract. Trivial precanditcan be omitted, i.e.,

if the postconditionf’post is defined, but the preconditiofipre is missing, the
trivial precondition:

f’pre _ = success
is assumed (for the sake of simplicity, we consider only yogerations in this section).

4 The tool together with more examples is available at:
http://www.informatik.uni-kiel.de/ ~ pakcs/dsdcurry/.

If a contract for an operatiofiis given, but the operatiofiis not defined or defined
by the rule “f = unknown ”, which is necessary if is referenced in the definition of
other operations i/, DSDCurry inserts the following definition ¢fin M C:

f x| checkPre " f" (fpre s X) & fpost xy =y
where y free

DSDCurry uses the postcondition to generate values siisfige specification and the
precondition to check violations of arguments. To detect @port a failure, our tool
computes the set of all the values(of'pre x) using the corresponding set function
f'pre s. This set is passed together with the name of the operatidhet@eneric
precondition checkecheckPre , which is defined by:

checkPre fname valset =
if iISEmpty valset
then error
("Precondition of operation ™++fname++" failed!")
else success

The postcondition checkerheckPost , is similarly defined. It is used when the con-
tract acts as an assertion, i.e., if the modulecontains a contract as well as an imple-
mentation off, DSDCurry replaces this implementation with:

f x| checkPre " f" (flpre s X) &> checkPost " f" (flpost s X V)

=y
where y = f' X
o
in which “f’ ...” contains the original definition of with every occurrence of re-

placed byf’. Thus, the original interface of any function is preservgddSDCurry.
The use of set functions is quite useful here to distinguighrtondeterminism orig-
inating from the evaluation of the operation (i.e., the @iéint values of/) from the
nondeterminism originating from the evaluation of the postition: only the latter
should be encapsulated (by the set functfgmost) to detect a possible assertion
violation.

The transformation scheme presented above supports gidy etsertions: if an
operationf is applied to some argument, the pre- and postconditionteaeked before
any result is returned. To implement lazy (and also enfdregaassertions, we use a
variant of the implementation of lazy and enforceable adissesr in Curry proposed in
[12] which we sketch in the following. The desired kind of @dions is selected in
DSDCurry by a flag.

To implement lazy assertions, we need two operations fdr gaeT:

wait T — T

ddunif :: T — T — T
The evaluation ofWait =" suspends as long as the valuerdé unknown (i.e., an un-
bound variable) and returns the value when it is knovaaluhif — x ¢” is a demand-
driven unification ofc (which is usually a free variable) and the expressiand returns
the unified value. “Demand-driven” means that the unificatioperformed to the de-
gree requested by other operations that refer to the reStiddunif x e”. These

operations can be mechanically generated for each cordatgeype by a case distinc-
tion on data constructors. For lack of space, we refer tofd2fhe details.

These two type-specific operations can be encapsulated sitgle typeAssert ,
defined as:

data Assert a = Assert (a - a@ — a — a

DSDCurry automatically generates the necessary defisitionall types used in the
contracts, i.e., ifr is a type used in some contract, there is an expressioaf type
Assert T encapsulating the lazy assertion operations for this type.

Based on these definitions, DSDCurry translates an impl&tien of operationf
of type o — 7 into the following definition, if the contract should be Igzchecked:

f x = withLazyContract a 71 ary " f" fpre s fpost s f' X
where [’

Again, f' is the renamed original definition ¢f and the new implementation gfcalls
a generic operatiowithLazyContract that decorates the evaluation with a lazy
checking of pre- and postconditions as follows:

withLazyContract (Assert wta unifa) (Assert wtb unifb)
fname presetfun postsetfun fun arg =
spawnConstraint
(checkPre fname (presetfun (wta X))
& checkPost fname (postsetfun (wta x) (wtb fx)))
(unifb fx (fun (unifa x arg)))
where x,fx free

The operation SpawnConstraint ¢ €", introduced in [5] for observation debug-
ging, evaluates the constraintoncurrently with the expressian i.e., the declarative
semantics is identical tac"* &> ¢”, but the suspension ef does not hamper the eval-
uation ofe. Thus,withLazyContract spawns two concurrent constraints to check
the pre- and postcondition. However, they are not eageeyglad, but the checking is
suspended (by the “wait” operatiomga andwtb) until the required values are known.
This is done by the demand-driven unificationgsifa , unifb) that instantiate their
first argument whenever the evaluation of the second arguimelemanded. Hence,
this implementation ensures that the assertion checkieg dot change the evaluation
order of the original program. Since spawned constrai®aaluated with high prior-
ity, a violated contract is reported immediately if the argant values are available.

The implementation of enforceable contracts is similahtd of lazy contracts ex-
cept for the following modification. In addition to spawnitige constraints for lazy
assertion checking as imithLazyContract , the constraints for strictly checking
pre- and postconditions are registered for evaluation ateskater time. These con-
straints are suspended until a global “control variablegdmes instantiated. Thus, the
evaluation of these constraints can be enforced by instargi the control variable.
In order to avoid the double evaluation of enforced constsaihat have already been
lazily evaluated, one can connect both constraints withndividual flag (i.e., a free
variable) that is set when the lazy assertion has been egdlga that this flag can be
checked before the corresponding constraint is enforced.

This implementation scheme uses only standard Curry festamd libraries. Thus,
DSDCurry was implemented as a source-level program tramsfiiton without chang-
ing the run-time system of the underlying Curry implemeiotat

5 Conclusions and Related Work

We have presented a tool towards the development of relitdallarative programs. Our
tool uses contracts for two purposes: rapid prototypingyhich the particular features
of functional logic programming allows us to compute theutesf an undefined oper-
ation from its postcondition, and assertion checking, inclipre- and postconditions
are evaluated at run-time to ensure that the operationledcas expected and produces
expected results.

In contrast to a wide-spectrum language like CIP-L [4] thaiorts the develop-
ment of correct programs by applying a stepwise transfaomairocess to specifica-
tions, we support more flexibility. As a consequence, we adrensure that the devel-
oped programs satisfy the specification. This property Ig dmecked in each concrete
program execution. Assertion checking has been proposeddny programming lan-
guages and paradigms. The use of assertions in languagesnviéager evaluation
strategy, like imperative, logic, or strict functional tarages, is easier than in our case.
For instance, [18] proposes an assertion language for tfeant} logic programming
that is combined in [14] with a static verification framewoff] considered a strict
language with side effects and proposed the evaluationsafrigns in parallel to the
application program to exploit the power of multi-core cartgrs.

As already discussed in Section 3, the treatment of asaeilitimon-strict languages
is more subtle. Since eager assertion checking might inflilre outcome of an execu-
tion, lazy assertions are proposed in [7] as a meaning piiegegiternative. Since lazy
assertions might not report some violations, Chitil and i} improved the situation
by introducing “prompt” assertions that deliver more résbut are still meaning pre-
serving. Degen et al. [8] discussed the different appraaahd put this into the slogan
“faithfulness is better than laziness.” Therefore, [1jprsed a further option: enforce-
able assertions are lazy but can also be eagerly checked faitieis required. Since
it is not obvious which alternative is the most appropriata non-strict language, our
tool allows the programmer to select the evaluation modessérions, namely strict,
lazy, or enforceable.

Future work will investigate support for proving the cotrezss of an operation
w.r.t. its contract. Proofs are very challenging for realiprograms, but in contrast to
assertions they incur no run-time cost, and guarantee thavime of a program stati-
cally rather than for a particular execution.

References

1. S. Antoy, R. Echahed, and M. Hanus. A needed narrowing stratgynal of the ACM
47(4):776-822, July 2000.

2. S. Antoy and M. Hanus. Set functions for functional logic prograngmin Proceedings of
the 11th ACM SIGPLAN International Conference on Principles and Practi®eclarative
Programming (PPDP’09)pages 73-82. ACM Press, 20009.

10.

11.

12.

13.
14.
15.
16.
17.

18.

. S. Antoy and M. Hanus. Functional logic programminGommunications of the ACM
53(4):74-85, 2010.

. F.L. Bauer, M. Broy, R. Gnatz, W. Hesse, B. KriegaBkner, H. Partsch, P. Pepper,
H. Wossner, and H. \Bssner, H.\dssner. Towards a wide spectrum language to support
program specification and program developmeA€M SIGPLAN Noticesl3(12):15-24,
1978.

. B. BraRel, O. Chitil, M. Hanus, and F. Huch. Observing functionailclagmputations. In
Proc. of the Sixth International Symposium on Practical Aspects of B#itla Languages
(PADL’'04), pages 193-208. Springer LNCS 3057, 2004.

. O. Chitil and F. Huch. Monadic, prompt lazy assertions in HaskelPrbt. APLAS 2007
pages 38-53. Springer LNCS 4807, 2007.

. O. Chitil, D. McNeill, and C. Runciman. Lazy assertions. Aroceedings of the 15th In-
ternational Workshop on Implementation of Functional Languages 21603) pages 1-19.
Springer LNCS 3145, 2004.

. M. Degen, P. Thiemann, and S. Wehr. True lies: Lazy contractefgrlanguages (faith-
fulness is better than laziness).4nArbeitstagung Programmiersprachen (ATPS,@8ges
370; 2946-59. Springer LNI 154, 2009.

. C.Dimoulas, R. Pucella, and M. Felleisen. Future contrac®rdoeedings of the 11th ACM

SIGPLAN International Conference on Principles and Practice of Detieée Programming

(PPDP’09), pages 195-206. ACM Press, 2009.

M. Hanus. The integration of functions into logic programming: Froeoii to practice.

Journal of Logic Programmingl9&20:583-628, 1994.

M. Hanus. Multi-paradigm declarative languagesPioceedings of the International Con-

ference on Logic Programming (ICLP 200pages 45—75. Springer LNCS 4670, 2007.

M. Hanus. Lazy and faithful assertions for functional logic pangs. InProc. of the 19th

International Workshop on Functional and (Constraint) Logic Prognaimg (WFLP 201Q)

pages 50-64. Universidad Pélithica de Madrid, 2010.

M. Hanus (ed.). Curry: An integrated functional logic languagegv0.8.2). Available at

http://www.curry-language.org , 2006.

E. Mera, P. bpez-Garta, and M. Hermenegildo. Integrating software testing and run-time

checking in an assertion verification framework.2Bth International Conference on Logic

Programming (ICLP 2009)pages 281—-295. Springer LNCS 5649, 2009.

B. Meyer.Object-oriented Software ConstructioRrentice Hall, second edition, 1997.

C. OkasakiPurely Functional Data StructuresCambridge University Press, 1998.

Simon Peyton Jones, editoHaskell 98 Language and LibrariesCambridge University

Press, 2003.

G. Puebla, F. Bueno, and M. Hermenegildo. An assertion landgieagmnstraint logic

programs. InAnalysis and Visualization Tools for Constraint Programmipgges 23—62.

Springer LNCS 1870, 2000.

