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Abstract. We describe a debugger for functional logic computations. The debugger is an accessory of a virtual machine
currently under development. A distinctive feature of this machine is its operational completeness of computations, which
places novel demands on a debugger. We give an overview of the debugger’s features, in particular the handling of non-
determinism, the ability to control non-deterministic steps, to remove context information, to toggle eager evaluation, and
to set breakpoints on both functions and terms. We briefly describe the debugger’s architecture and its interaction with
the associated virtual machine. Finally, we describe a short debugging session of a defective program to show in action
debugger features and window screenshots.

1 Introduction

Functional logic programming joins in a single programming paradigm characterizing features of
functional and logic programming. There are a number of languages with this aim, e.g., Curry [23],
Escher [26], Le Fun [2], Life [1], Mercury [36], NUE-Prolog [29], Oz [35] and Toy [27], to name a
few. These languages support user-defined functions and the subsequent evaluation of expressions
involving these functions. Debugging functional computations of this kind is a non-trivial, but well-
studied problem [5,14,15,18,31,32,37,38,40,42]. These languages also support the use of logic
variables. Debugging programs with the combination of user-defined functions and logic variables
is much more challenging for reasons that will be discussed shortly.

Indeed, programming with the combination of user-defined functions and logic variables is
the subject of active research even for its most fundamental aspects, e.g., the formulation of both
adequate semantics and efficient implementations. A significant problem of combining functions
and logic variables is what to do when the execution of a program leads to the evaluation of a
functional expression containing uninstantiated logic variables. This problem is solved by either
residuation or narrowing [19].Residuationdelays the evaluation by transferring control to some
other portion of the program in hopes that the variables will be instantiated by a predicate so that
the evaluation of the functional expression can continue.Narrowing, instead, guesses instantiations
of variables which allow the evaluation to continue. Thus, the result of evaluating by narrowing an
expression produces both the value of the expression, generalizing a functional computation, and
a substitution of some variables of the expression, generalizing a logic computation. The details
of this computation are quite technical and outside the scope of this discussion. Examples will be
provided in the next section.

Narrowing introduces non-determinism in the sense that distinct instantiations of a variable in
an expression may be equally plausible and different instantiations may lead to different values.
This suggests to allow functions (including constants seen as functions of zero arguments) that
for the same arguments return different results. Obviously, these “things” are not functions in the
mathematical sense, but they are defined and used as ordinary functions in a program. The semantics
of a functional logic program is often formulated by seeing the program as a first-order rewrite
system. Higher-order and partially applied functions are eliminated by a transformation referred to
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asfirstification [8,41]. Then, the execution of a program consists in the evaluation by narrowing of
an expression using the rules of the rewrite system.

The characteristics discussed above pretty much shape a debugger for a functional logic lan-
guage. The debugger has the features generally found in tracing debuggers for functional languages.
It shows evaluation steps as reductions. In the case of a functional logic language, rather than the
β-reductions of theλ calculus, these reductions are narrowing steps of a rewrite system—for first-
order, variable-free expressions the difference between the two is small. In addition, the debugger
must handle logic variables and non-determinism. How this is done depends on what a functional
logic language provides. Our work is centered on Curry [23] and on an implementation of Curry,
referred to as theFLVM, currently under development [7]. Curry offers both narrowing and residua-
tion and theFLVM offers a complete implementation of non-determinism. How these characteristics
affect a debugger will be discussed at length in the following sections.

Section 2 contains background information on Curry and theFLVM. Section 3 presents an
overview of the significant features of our debugger. Section 4 sketches the architecture of the
debugger and how it interacts with theFLVM. Section 5 shows an example of a debugging session.
Section 6 discusses related work. Section 7 offers our conclusion.

2 Background

Curry provides built-in types, such as numbers and characters; user-defined algebraic data types;
functions, including higher-order and non-deterministic ones, defined by pattern matching; lazy
evaluation; logic variables; and built-in search. The syntax is Haskell-like. An example of a com-
plete program follows. The numbers to the left are not part of the program. They are used for
reference purposes only.

1 data Color = red | white | blue

2 mono _ = []
3 mono c = c : mono c

4 solve flag | flag =:= x ++ white:y ++ red:z
5 = solve (x ++ red:y ++ white:z)
6 where x,y,z free
7 solve flag | flag =:= x ++ blue:y ++ red:z
8 = solve (x ++ red:y ++ blue:z)
9 where x,y,z free
10 solve flag | flag =:= x ++ blue:y ++ white:z
11 = solve (x ++ white:y ++ blue:z)
12 where x,y,z free
13 solve flag | flag =:= mono red ++ mono white ++ mono blue
14 = flag

Line 1 defines the typeColor whose instances are three constants. Lines 2 and 3 define a non-
deterministic function,mono, that takes an argument (of typeColor) and returns a list whose ele-
ments are all equal to the argument. The textual order of the rules is irrelevant. Lists of any length
can be returned. The remaining lines define a function,solve, that “solves” theDutch National
Flag problem in the spirit of [16], i.e., by swapping pebbles out of place.
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The functionsolve is defined by conditional rules of the form:

f t1 . . . tn | c = e where vs free

The conditions areequational constraintsof the forme1 =:= e2 which are satisfiable if both sides
e1 and e2 evaluate to unifiable data terms. Free variables, introduced by thewhere clause, in a
condition may be instantiated by narrowing steps, if this is useful to satisfy the condition.

In contrast to other declarative programming languages, e.g., Haskell, where the first matching
rule is applied, in Curry all matching (to be more precise, unifiable) rules are non-deterministically
applied to support complete computations. This enables the definition of non-deterministic func-
tions, such asmono andsolve, which may have more than one result on a given input. As an
example of solving constraints, consider the evaluation of the following expression:

solve [white,red,blue,white]

Both the first and third rule ofsolve can be fired, because the conditions of these two rules are
satisfiable. For example, the first condition holds ifx = [], y = [] andz = [blue,white].
These instantiations ofx, y andz are computed by the evaluation of the constraint. With these
instantiations, the expression is rewritten tosolve [red,white,blue,white].

A crucial design decision of the implementation of the language is how to handle the fact that
two or morerules are applicable to the same expression. One common strategy is to select one rule
and delay the application of the others until the selected rule yields either a result or a failure. This
is a simple strategy adopted, e.g., by some implementations of Curry [20,28] and other functional
logic languages [27]. But it is unsatisfactory because if the application of the selected rule leads to
a non-terminating computation no other rule that could yield a result is ever applied.

Another strategy is to fork the computation for every applicable rule and to execute fairly and
independently all the results. This is the strategy adopted by theFLVM. This design decision is
more satisfactory because it ensures the operational completeness of the language implementation.
However, it also introduces novel problems for a debugger, since the trace of a computation is no
longer the traditional linear sequence of steps, but it has a tree-like structure. A distinctive feature
of our debugger is the handling of this structure.

3 Features Overview

In this section we present some characterizing features of our debugger, called TeaBag (The Er-
rors And Bugs Are Gone!). These features are realized by several interactions with a computation.
A synopsis of these features follow:computation structureis a window that visualizes the non-
deterministic steps of a computation;choice controlis an option for the early elimination of unde-
sired non-deterministic steps;context hidingis an option for displaying only a subterm of the term
being evaluated and/or only steps that affect this subterm;eager evaluationis an option to eagerly
evaluate and/or replace a subterm of a term;runtime debuggingis a debugging mode that supports
non-terminating computations and runtime selection of non-deterministic steps;breakpointsis an
option to set breakpoints not only on functions, but also on terms;highlighting is the use of colors
and other visual clues to ease understanding.

There are several classes of debugging tools for declarative languages. This subject will be fur-
ther discussed in Section 6. To understand some of the following features, we recall the difference
between a tracer and a runtime debugger. These terms are not formally defined and our descrip-
tions are only a subjective point of view to aid comprehension. A tracer executes a computation
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and when the computation terminates it displays some representation of the computation, e.g., the
computation steps. A runtime debugger executes a computation and if some events occur it displays
information about these events. The events generally include the termination of the computation,
runtime errors, and the invocation of certain functions selected by the user. A runtime debugger can
provide useful information about non-terminating and/or failing computations. It can also be helpful
when debugging code that interacts with the outside world, e.g., the program directly paints to the
screen or uses a socket. However, a runtime debugger generally provides less detailed information
about ordinary computations.

3.1 Computation Structure

A computation is the set of the narrowing or rewriting steps performed on the term being evaluated.
Computations in deterministic languages are a linear sequences of steps. In a non-deterministic
language a computation is a tree sometimes called the narrowing space. The narrowing strategy
executed by theFLVM is essentially an implementation of theinductively sequential narrowing
strategy[6] with some adjustments to support residuation. In this framework, narrexes and possibly
redexes can have more than one replacement. When this happens, a trace forks into several paths—
one for each replacement. In other words, a computation has the structure of a tree and a trace is a
path in this tree.

TeaBag provides a view of the tree structure of a computation. This view does not show all the
rewriting and narrowing steps of the computation. It just shows a tree in which a branch represents
a non-deterministic step and a leaf represents the endpoint of a trace, which is a term totally or
partially evaluated. In this view, a sequence of deterministic steps is shown simply as an arc from
a parent to a child in the tree. This view highlights the current path through the tree that the user is
looking at in the trace browser. The trace browser, discussed in section 3.2, shows all the rewriting
and narrowing steps of a trace.

Having a computation structure is very important to understand how a result is obtained. With-
out the computation structure it is difficult to know where a rewriting or narrowing step fits into the
overall computation. The computation structure lets the user know which non-deterministic steps
were made to get to any rewriting or narrowing step in a trace. In deterministic computations, where
traces are linear, this contextual information can be obtained with just a counter, but this is impos-
sible in non-deterministic computations. An example of the computation structure is in figure 3.

A variable is displayed with both its source code namev and a unique internally generated
numbern in the formatv|n. The name aids the user in relating steps of the computation to the
source code. Since different variables may have the same name because of either recursion or the
scoping rules, the unique number allows the user to distinguish different variables with same name.

3.2 Trace Browser

The trace browser shows the rewriting and narrowing steps for the selected path in the computation
structure. There are two ways to view the trace. The first way is as a table of all rewriting and
narrowing steps. This view is convenient for getting a “birds eye” view of the trace. However, it is
not suitable for examining individual rewriting or narrowing steps of the trace. The second way to
view a trace is by examining each rewriting and narrowing step. The user can choose to view one
or two terms of the trace at a time. Each term in the trace is obtained from a rewriting or narrowing
step on the previous term. The trace browser includes buttons to move to the next, previous, first,
and last steps. The user can also select a particular step number to jump to.
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The trace browser interacts with the computation structure. The node or edge in the computa-
tion structure corresponding to the current step in the trace browser is highlighted. When a non-
deterministic step is displayed in the trace browser the user is given the option of which branch to
follow. The selected path is highlighted in the computation structure. The user can also select a path
in the computation structure and the trace browser will be updated to display that path. An example
of the trace browser is in figure 1.

Fig. 1. Example of Trace Browser. The terms are displayed as trees. The user can expand and collapse subtrees. Nodes
in the tree are symbols and branches are arguments.

3.3 Choice Control

TeaBag includes computation management to control subcomputations originating from non-deter-
ministic steps made during runtime debugging. When a computation executes a non-deterministic
step, theFLVM evaluates fairly and independently all the results of this step. This is essential for
ensuring the operational completeness of a computation. This view allows the user to kill, pause,
and activate the subcomputation of any individual result. Often, the user is interested only in a
subset of all the choices of a non-deterministic step. Since there can be an exponential growth of
non-deterministic steps, being able to pause and kill subcomputations toward the beginning of a
computation can greatly reduce the total number of non-deterministic steps made. This makes it
easier for the user to debug computations that would normally produce too many steps to examine.

3.4 Context Hiding

Even for small programs, the sheer volume of data to be displayed and analyzed for an execution
may become a serious obstacle to debugging. TeaBag alleviates this problem with two features
intended to suppress unwanted information.

Term Size Lazy evaluation has a propensity for creating large terms during a computation. Large
terms are not displayed easily and they make it hard to find subterms of interest. Often, the pro-
grammer is interested in examining a subterm nested somewhere in a large term. To assist the user
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in focusing on this term, TeaBag can be instructed to display a subterm of a term of a computation.
The subterm to be displayed is selected by the user. An option, allows the user to select only the
redex or narrex of each step, i.e., to eliminate the portion of a term above the subterm replaced by
a step. Also, TeaBag will expand terms only as much as is needed to display redex, narrex, and
created positions, i.e. to eliminate the portion of the term below the parts of the term that were re-
placed. The user has the option to further expand the term to see more. Hiding the context of a term
makes finding pertinent information easier for the user.

Trace Length Likewise, the number of steps in a trace can be very large. Many times the user will
only want to look at a subset of the trace steps, in particular at all the steps that affect a particular
subterm of the term being evaluated. For example, this may be convenient for terms rooted by a
function thought to be defective. TeaBag lets the user choose which terms to trace. The trace for
that term will only have the rewriting and narrowing steps performed on that term or one of its
subterms. This feature limits the number of rewriting and narrowing steps that the user needs to
look at. This makes it possible for the user to examine traces that would normally be too long to
look at.

The programmer may want to look at a portion of a trace after thousands or millions of steps
since the beginning of a computation. Displaying or even recording all the steps of a computation
can be very time consuming or even infeasible. TeaBag lets the user set breakpoints so that no step
is displayed or recorded until the breakpoint. The user can set breakpoints in a program and choose
to display only the steps that are executed on a subterm between breakpoints or until the subterm is
in normal form.

3.5 Eager Evaluation

In a lazy language, the arguments of a function applicationf t1 . . . tn are evaluated, as the name
says, lazily. For example, ifti is needed to compute the application off , it will be evaluated to
a constructor head normal form. Then steps may be executed on other terms unrelated tof and
ti, but it is possible that eitherti or some other argument off will need to be further evaluated to
compute the application off . In short, the arguments off may be computed in stages. This back and
forth switching between arguments may occur repeatedly. It may be difficult for the programmer
to understand the behavior off until some of its arguments are sufficiently evaluated, but it is time
consuming and distracting to interleave the evaluations of these arguments with the evaluation of
other unrelated terms.

On demand eager evaluation is a feature that lets the programmer override the default lazy
evaluation of a term. In this context, eager evaluation means evaluation to normal form. Any term
displayed in a window can be interactively selected. By default, the result of eagerly evaluating a
term is only displayed and does not replace the term. This lets the user see what the term evaluates
to without changing the lazy behavior of the program. An option, allows the user to replace a term
with its eagerly evaluated result. This is another device to compress the information displayed to the
user. Obviously, an attempt to eagerly evaluate a term may result in a non-terminating computation
even for a trace that terminates.

3.6 Runtime Debugging

TeaBag is not just merely a tracer. It is also a runtime debugger. TeaBag allows a programmer to
see the rewriting and narrowing steps of a computation at runtime. The unique feature of TeaBag’s
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runtime debugging environment is that it interacts with the tracer. The tracer will reflect the compu-
tation(s) the programmer activated during runtime. It will also compress in a single step the optional
eager evaluation of a term. Choice Control, the feature described in Section 3.3, is available dur-
ing runtime debugging and can effect what steps are generated for a trace. The runtime debugging
environment is shown in figure 2.

Fig. 2. Runtime Debugging Environment

3.7 Breakpoints

TeaBag lets the programmer set a breakpoint on a function during runtime debugging. Whenever
a rewrite rule defining that function is applied, theFLVM will be paused and the rule application
will be displayed. This is convenient to debug non-terminating computations. TeaBag also lets the
programmer attach a breakpoint to anindividual term during runtime debugging. When that one
term is replaced, theFLVM will be paused and the step from which the replacement originates will
be displayed. This is convenient when the programmer does not understand when or why a term is
evaluated. To the best of our knowledge this is the only debugger that allows breakpoints to be set
on individual terms.

3.8 Highlighting

Highlighting uses colors, icons, and other visual clues as aids to understand the large amounts of
displayed information.
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Term Replacement When a rewriting or narrowing step is displayed both the redex pattern and
created positions are highlighted. This information is intended to speed up the perception of how
a rewriting or narrowing step changes a term. It also enables the viewer to determine which of the
possibly many rewrite rules of a function has been applied in the step.

Variable Binding When a variable is bound, both the variable and its instantiation are highlighted.
This makes it easier to detect that a step involves a binding and to determine both the variable being
bound by the step and the step’s substitution.

Source CodeWhen available, the source code executed to perform a step is highlighted. Informa-
tion about the source code is optionally added by the compiler to the generated bytecode. Providing
source code highlighting makes it easy for users to correlate the rewriting or narrowing steps with
their code. Being able to relate information displayed by the debugger to source code is considered
important [38] since ultimately a bug in a program will be fixed by changing the source code.

Non-Deterministic Choice Selection Source Code HighlightingWhen the user selects a non-
deterministic step to follow in the trace browser, the source code for that selection is highlighted if
it is available. For example, in figure 4 the non-deterministic choice selection in the trace browser
corresponds to the third rewrite rule forsolve as highlighted in the source code.

4 Architecture

In this section, we give a few details on the architecture of our debugger. A significant aspect of
our architecture is that the debugger interface is entirely separated from theFLVM. The debugger
is implemented in Java. Java is a friendly, portable language with excellent graphical libraries. The
FLVM is implemented in Java as well, but this may change in the future. The efficiency of theFLVM
is obviously a concern and the size of its code is small, thus a conversion to a different language is
feasible.

A potential problem of most debuggers is scalability. Generally, one must consider both large
programs and programs that execute a large number of steps. In our case, one should also con-
sider programs with a large degree of non-determinism. Often, scalability is in conflict with both
providing detailed information and presenting information in a form visually rich, e.g., by means
of colors, fonts, and options. We have chosen to provide detailed, visually rich information and
have also implemented several features, described in Section 3.4, which should help in debugging
realistic programs.

Top Level Architecture The debugger interface is decoupled from theFLVM by running both
in separate processes and communicating over sockets. This allows the debugger to work with any
virtual machine that implements the socket interface. Having theFLVM in a separate process makes
it easy for the debugger to kill and restart it which is especially useful when theFLVM executes a
non-terminating computation.

Debug Events The FLVM communicates with the debugger by sending it debug events over a
socket. The debugger has a thread listening for these events. When data becomes available on this
socket the debugger parsers the event and dispatches it to the event thread for processing.
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Debug Commands TheFLVM understands both user commands, such as “:load” and “:quit”
to respectively load a module and terminate an execution, and debugging commands, such as the
request to eagerly evaluate a term. User commands are given interactively to the command line
interpreter. Debugging commands for theFLVM have a textual representation that could be typed
in by a user. This allows theFLVM to redirect the socket of communication to standard input and
run as if there was a user typing in the commands. When a program is executed under the debugger,
the debugger acts as a proxy for theFLVM for all user input.

Tracing The information for a trace is written to a file during runtime. The trace browser reads data
from that file to display the steps in the trace window. Since, the user can choose which terms to
trace, not all steps of a computation are recorded to this file. Whenever a term is set to be traced, the
FLVM creates a chain of responsibility structure [17] among its subterms via a listener. Then, when
a subterm is replaced, it propagates this information up the chain of responsibility. Any term along
this chain that has a trace set on it fires a trace step event to the debugger. When the debugger gets
the trace step event, it writes the event to a file. In an attempt to make the changes to theFLVM as
simple as possible the debugger handles the files associated with tracing. However, marshaling and
unmarshaling the event is time consuming. One optimization we foresee is moving the file handling
to theFLVM and having it write the trace steps directly rather than through the debugger.

To minimize file sizes only the first step of the file contains the entire term. Subsequent steps
contain the difference from the previous term represented as a position and replacement. To get a
step from the file the first term is parsed out. Then for each step up to the desired one the given
position in the term is replaced with the replacement. Since this can be time consuming (it can take
as long as the entire computation) the files are broken up so that they contain at most 50 steps.

The execution of a non-deterministic step fires a non-deterministic trace step event to the de-
bugger. The debugger creates new traces for each of the possible replacements. A non-deterministic
trace step is just a collection of traces.

Breakpoints Each time theFLVM replaces a term it checks if either the term or the symbol (a
function) at the root of the term has a breakpoint set on it. If it does then theFLVM fires a breakpoint
event to the debugger, suspends the thread that evaluates terms, and wakes up the thread that reads
input from the user.

Eager Evaluation To perform eager evaluation of a term a new evaluation thread to work on a
deep copy of the term to be evaluated is created. Creating the deep copy makes sure that there are
no shared terms between the copy and any other term in theFLVM. This is necessary to preserve the
lazy evaluation. When the newly created evaluation thread finishes evaluating the term to normal
form an evaluation event is fired to the debugger. TheFLVM holds on to the term to evaluate and its
replacement until it knows if the user has selected to replace the term or not.

5 Example

The following example demonstrates the computation structure of TeaBag. Consider theDutch
National Flagprogram of Section 2 where lines 10-12 are replaced by:

10 solve flag | flag =:= blue:y ++ white:z
11 = solve (white:y ++ blue:z)
12 where y,z free
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i.e., the prefix,x, of a blue-white pair of pebbles out of place has been forgotten. Whensolve
[white,red,blue,white] is run using the above program the result is a failure. To find this
bug we first generated a trace ofsolve [white,red,blue,white]. Part of the structure for this
trace is shown in figure 3. We decided to follow the path through the computation structure that

Fig. 3. Computation Structure for Buggy Dutch National Flag Program

we thought should have led to a solution. Since the choices along this path should have led to a
solution, examining the rewriting and narrowing steps on this path will tell us where the bug is
located. In this example we realized that to get a solution the first and third rules ofsolve would
need to be executed. The first rule should swapred andwhite and the third rule should swapblue
andwhite. Either order of applying these rules should led to a solution. We arbitrarily decided to
look at the path that is generated from applying the first rule and then applying the third rule. In
order for the first rule to swapred andwhite it must find bindings for the free variablesx, y, and
z that satisfyflag =:= x ++ white:y ++ red:z. Sinceflag is [white,red,blue,white]
bindingx to [], y to [], andz to [blue,white] will work. We used this information to find the
path thought the computation structure for applying the first rule.

There were two ways we could have found this trace path in the computation structure. We
could have stepped through the trace in the trace browser one step at the time. Then when a non-
deterministic step was made we would have been prompted to pick a branch to follow. By selecting
the appropriate branches we would have followed the trace corresponding to the path in the compu-
tation structure that we wanted. Because there is more contextual information, this method works
well when the correct choices at each non-deterministic step are difficult to determine. The second

13



way to find a trace path in the computation structure is to follow branches through the tree. Each
node in the tree has one branch for each possible replacement. By knowing what the replacements
should be, the correct branch at each node can be selected. Thus, this method works well when
the correct choices at each non-deterministic step are known. We chose the second option since we
knew which choices we wanted to examine. The first branch we followed was the one for swapping
red andwhite. The next branch in the computation structure was for binding the variablex. One
of the branches was for bindingx to the empty list and the other branch for the non-empty list. The
same was true ofy. So we chose the empty list for both. We saw that there was no choice to be
made forz since our choices forx andy forcedz to be bound to[blue,white]. The next choice
we had to make was forsolve(:(...)).

At this point we needed to see what the term for the trace looked like to see ifred andwhite
were actually swapped like we thought they should have been. We were expecting that the term
would besolve [red,white,blue,white]. To check this, we right clicked on the node in the
computation structure forsolve(:(...)) and selected “Move trace to this step.” This updated
the trace browser to show the trace along the path we have chosen so far and to display the step
for this choice as the current step. Figure 4 shows the trace at this point. The upper left corner is
the trace step for picking a non-deterministic choice forsolve(:(...)), the upper right corner
is the source code with the code for the choice in the trace browser highlighted, and the lower
panel shows the computation structure with the current path through the trace highlighted. Since
we were interested in whether or notred andwhite were actually swapped we moved the trace
back one step. This step showed thatred andwhite had been swapped. The term for this step was
solve (red : [] ++ [white,blue,white]).

Now blue andwhite must be swapped to get a solution. So we continued along the path we
had followed so far choosing the path in the computation structure for swappingblue andwhite.
We noticed immediately that this path leads to a failure as can be seen in figure 4. This caused
us to think that the bug for this program was somewhere between choosing to swapblue and
white and the failure. So we stepped through the trace one step at a time in the trace browser
starting with the step for choosing to swapblue andwhite. After looking at five trace steps we
noticed that for the condition to evaluate to a success,[red,...] must be equal to[blue,...].
Obviously, this can never happen sincered can not be equal toblue. With this information we
then went back in the trace to see whyblue must be equal tored. We went back to the pre-
vious choice step to examine how the condition was created. Here we noticed that the condition
is [] ++ (red : [] ++ [white,blue,white]) =:= [blue,y,white,z]. At this point we realized
that there is no way forred to match anything on the right hand side since there is no free variable
for it. So we added a free variable to this rule giving us the code presented in Section 2.

We could have also found this bug by looking at the path in the computation structure that
corresponds to applying the third rule ofsolve and then the first rule ofsolve. If we had chosen
this path then we would have found the bug much faster since the path for applying the third rule of
solve immediately leads to a failure as can be seen in figure 3.

6 Related Work

Functional logic languages borrow ideas from both functional and logic languages. Functional logic
language debuggers are no different. They borrow ideas from debugging functional languages and
from debugging logic languages. Four different debugging techniques have been applied to debug-
ging functional logic languages. The first one is tracing. Tracing is a debugging technique used for
debugging functional programs [14,15,38,42]. Tracers show each step of a computation to the pro-
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Fig. 4. Trace of Buggy Dutch National Flag Program

grammer. Typically these steps are reductions, though they do not have to be. For example, tracing
has been used to trace the redex trail of Haskell programs [38,14]. Likewise, CIDER [22] is a func-
tional logic debugger for Curry based on tracing. Trace steps in CIDER are narrowing or rewriting
steps. A specialized form of tracing called box-oriented debugging is the second type of functional
logic debugging. Box-oriented debugging was first developed by Byrd [11] for debugging Prolog
programs. Box-oriented debuggers trace goals in logic programs. Box-oriented debugging has been
extended to functional logic languages by Hanus and Josephs [21] and by Arenas-Sánchez and Gil-
Luezas [9]. The third type of functional logic debugger is observation debugging. This idea was
first developed by Gill [18] for Haskell. It was latter incorporated into the Haskell tracer called Hat
[40]. Observational debugging works by letting the programmer see the intermediate data structures
that are passed between functions. Recently, Braßel, et al. extended this idea to functional logic lan-
guages by handling non-deterministic search, logical variables, concurrency, and constraints [10].
The final type of functional logic debugger is algorithmic. This idea was initially proposed by
Shapiro [34] for debugging Prolog programs. The idea of algorithmic debuggers has been used in
functional [31,32,37], logic [25,34,39], and functional logic debuggers [3,4,12,13,30]. Algorithmic
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debuggers work by using the declarative semantics of the program. An oracle, typically the user, is
asked questions about the intended meaning of their program in an automated way until the debug-
ger can point out where the bug is located. Some examples of algorithmic debuggers for functional
logic languages are Buggy [3], an accessory of the Münster compiler [12], and the debugger in the
Toy system [13].

At first glance it may seems surprising that almost all functional logic language debuggers are
algorithmic. Why haven’t more debugging ideas from the functional and logic communities be
explored in functional logic languages? We believe the reason for this is that algorithmic debuggers
have been proven to work in both functional and logic languages so it is only natural that they
would also work in functional logic languages. Most of the other debugging schemes for functional
and logic languages have only been shown to work in their respective family of languages. Thus
directly using one of those schemes for debugging functional logic languages will only debug “half”
of the language. For example, CIDER [22] contains a tracer of rewriting and narrowing steps for
debugging. This tracer works fine for tracing deterministic programs. However, it becomes difficult
to use in non-deterministic programs. It shows the trace of non-determinism as a deterministic
backtracking step which can be difficult to follow [11]. The tracer in CIDER is not as effective on
non-deterministic programs as it is on deterministic programs.

For a functional logic debugger to be useful it has to be able to deal with both deterministic
and non-deterministic features that real programs use [12]. We have applied this principle to tracing
rewriting and narrowing steps in functional logic programs. We created a functional logic tracer that
can be used to trace both deterministic and non-deterministic programs. To do this we borrowed the
traditional tracing of reduction steps idea from functional programming [42] and combined it with
the structure of the search space [33]. We believe that our approach is the first attempt to exploit
this combination to trace the steps in a computation.

TeaBag is a debugger for Curry. There are three other debuggers for Curry: Münster [12],
COOSy [10], and CIDER [22]. M̈unster is a compiler for Curry that contains a declarative debugger
of wrong answers. TeaBag and Münster take different approaches to debugging Curry. Münster uses
the declarative semantics of the program for debugging it. TeaBag uses the runtime narrowing and
rewriting steps. M̈unster systematically asks the user questions until it can deduce where the bug is
located. TeaBag, on the other hand, lets the user investigate how their program is being executed
to find the bug. Given these differences Münster and TeaBag should be viewed as complementary,
rather than competing, debuggers. Like Münster, COOSy takes a different approach to debugging
from TeaBag. COOSy is an observational debugger. Thus COOSy lets the user view the values of
expressions. To handle the non-deterministic aspects of functional logic programs COOSy extended
Gill’s observational debugging idea [18] to handle non-deterministic search, logical variables, con-
currency, and constraints. Like TeaBag, COOSy extended a functional language debugging idea
to handle all aspects of functional logic languages. Alternate non-deterministic choices in COOSy
are shown in a group and the bindings of logic variables are displayed. TeaBag is much more like
CIDER in that both of them use tracing for their debugger. CIDER is an IDE for Curry that contains
a debugger which uses tracing to debug Curry. However, CIDER does not provide context hiding,
highlighting, or a trace structure suitable for debugging non-deterministic programs. Thus CIDER
is more difficult to use than TeaBag for debugging large programs and non-deterministic programs.
While the sole focus of TeaBag is debugging, CIDER focuses on program development of which
debugging is just one aspect. Thus CIDER includes analysis, editing, and compilation tools which
are not in TeaBag.

TeaBag has a unique place in the current landscape of debuggers for functional logic languages.
It is the only tracer of narrowing steps we are aware of that truly handles both deterministic and
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non-deterministic features found in real functional logic programs. For more detailed information,
source code, and to download TeaBag refer to [24].

7 Conclusion

We have presented, TeaBag, a debugger for functional logic computations. TeaBag has been devel-
oped as an accessory of theFLVM, a virtual machine intended for the execution of Curry programs.
A distinctive characteristic of this machine is its operational completeness. This means that the
strategy for the execution of non-deterministic steps is concurrency, rather than backtracking. This
strategy poses novel demands on a debugger.

Our debugger has both typical features of functional and logic debuggers, specifically features
found in tracers and/or runtime debuggers, and novel features for displaying and managing non-
determinism. In addition to standard features such as context elimination, highlighting and break-
points on functions and terms, the user can view the non-deterministic steps of a computation and
display only traces that make certain user-selected steps. To our knowledge, this is the first debugger
with this capability.
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