
A Monadic Semantics for Core Curry?

Andrew Tolmach and Sergio Antoy

Dept. of Computer Science, Portland State University,
P.O.Box 751, Portland OR 97207, USA

{apt,antoy}@cs.pdx.edu

12th Int. Workshop on Functional and (Constraint) Logic Programming (WFLP03), Valencia, Spain — June 12-13, 2003.
Technical Report DSIC-II/13/03, Departmento de Sistemàs y Computatciòn, Universidad Polit́ecnica de Valencia, pp. 33-46.

Abstract. We give a high-level operational semantics for the essential core of the
Curry language, including higher-order functions, call-by-need evaluation, non-
determinism, narrowing, and residuation. The semantics is structured in monadic
style, and is presented in the form of an executable interpreter written in Haskell.

1 Introduction

The functional logic language Curry combines lazy functional programming with logic
programming features based on both narrowing and residuation. Describing the seman-
tics of these features and their interaction in a common framework is a non-trivial task,
especially because functional and logic programming have rather different semantic tra-
ditions. The “official” semantics for Curry [4], largely based on work by Hanus [6, 5],
is an operational semantics based on definitional trees and narrowing steps. Although
fairly low-level, this semantics says nothing about sharing behavior. Functional lan-
guages are typically given denotational or natural (“big step”) operational semantics.
In more recent work [1], Albert, Hanus, Huch, Oliver, and Vidal propose a natural se-
mantics, incorporating sharing, for the first-order functional and narrowing aspects of
Curry; however, in order to collect all non-deterministic solutions and to incorporate
residuation, they fall back on a small-step semantics. While small-step semantics have
the advantage of being closer to usable abstract machines, they tend to be lower-level
than big-step models, and perhaps harder to reason about.

In this paper, we describe a variant of the semantics by Albert,et al. that remains
big-step, but delivers all non-deterministic solutions and handles residuation. It is also
fully higher-order. Our treatment is not especially original; rather, we have attempted to
apply a variety of existing techniques to produce a simple and executable semantic in-
terpreter. In particular, we follow Seres, Spivey, and Hoare [13] in recording all possible
non-deterministic solutions in a lazily constructedforest, which can be traversed in a va-
riety of orders to ensure fair access to all solutions. We useresumptions[12, Ch. 12] to
model the concurrency needed to support residuation. We organize the interpreter using
monadsin the style popularized by Wadler [15], which allows a modular presentation of
non-determinism [7, 3] and concurrency. We believe that the resulting semantics will be
useful for understanding Curry and exploring language design alternatives. It may also
prove useful as a stepping stone towards new practical implementations of the language.

? This work has been supported in part by the National Science Foundation under grants CCR-
0110496 and CCR-0218224

data Exp = Var Var type Var = String

| Int Int type Constr = String

| Abs Var Exp type Prim = String

| App Exp Exp type Pattern = (Constr,[Var])

| Capp Constr [Exp]

| Primapp Prim Exp Exp

| Case Exp [(Pattern,Exp)]

| Letrec [(Var,Exp)] Exp

Fig. 1.Expressions.

Our semantics is defined as an executable interpreter, written in Haskell, for a core
subset of Curry. We present the interpreter in three phases. Section 2 describes the eval-
uation of the functional subset of the language. Section 3 introduces non-determinism,
logic variables, and narrowing. Section 4 adds residuation. Section 5 offers brief con-
clusions. The reader is assumed to be familiar with Haskell and with monads.

2 The Functional Language Interpreter

The abstract syntax for the functional part of our core expression language is given in
Figure 1. The language is not explicitly typed, but we assume throughout that we are
dealing with typeable expressions. Function abstractions (Abs) have exactly one argu-
ment; multiple-argument functions are treated as nested abstractions. Functions need
not be lambda-lifted to top level. For simplicity, the only primitive type is integers
(Int) and all primitive operators are binary; these limitations could be easily lifted.
Primitive operators, which are named by strings, act only on constructor head-normal
forms. Each constructor is named by a stringc, and is assumed to have a fixed arity
ar(c) ≥ 0. Constructors can be invented freely as needed; we assume that at least the
nullary constructorsTrue, False, andSuccess are available.

Constructor applications (Capp) and patterns (withinCase expressions) and primi-
tive applications (Primapp) are fully applied. Unapplied or partially applied construc-
tors and primitives in the source program must beη-expanded.Case expressions an-
alyze constructed values. Patterns are “shallow;” they consist of a constructor namec
and a list ofar(c) variables. The patterns for a singleCase are assumed to be mutually
exclusive, but not necessarily exhaustive. More complicated pattern matching in the
source language must be mapped to nestedCase expressions. Such nested case expres-
sions can be used to encode definitional trees [2]. Finally,Letrec expressions introduce
sets of (potentially) mutually recursive bindings.

Curry is intended to use “lazy” or, more properly,call-by-needevaluation, as op-
posed to simple call-by-name evaluation (without sharing). Although the results of call-
by-name and call-by-need cannot be distinguished for purely functional computations,
the time and space behavior of the two strategies are very different. More essentially,
the introduction of non-determinism (Section 3) makes the difference between strate-
gies observable. We therefore model call-by-need evaluation explicitly using a mutable
heapto represent shared values. (The heap is also used to represent recursion without

34

type HPtr = Int

data Value =

VCapp Constr [HPtr]

| VInt Int

| VAbs Env Var Exp

type Env = Map Var HPtr

data Heap = Heap {free :: [HPtr], bindings :: Map HPtr HEntry}

data HEntry =

HValue Value

| HThunk Env Exp

| HBlackhole

Fig. 2.Key data types for evaluation.

recourse to a Y-combinator.) This approach corresponds to the behavior of most real
implementations of call-by-need languages; its use in formal semantics was introduced
by Launchbury [10] and elaborated by Sestoft [14], and was also adopted by Albert,et
al. [1].

Following a very old tradition [9], we interpret expressions in the context of anen-
vironmentthat maps variables to heap locations, rather than performing substitution on
expressions. The same expression (e.g., the body of an abstraction) can therefore evalu-
ate to different values depending on the values of its free variables (e.g., the abstraction
parameter). In this approach we view the program as immutable code rather than as a
term in a rewriting system.

The main evaluation function is

eval :: Env -> Exp -> M Value

which evaluates an expression in the specified environment and returns the correspond-
ing constructor head-normal form (HNF) value embedded in a monadic computation.
The monad

newtype M a = M (Heap -> A (a,Heap))

represents stateful computations on heaps. TypeA a is another monad, representing
answersinvolving typea.

The key type definitions, shown in Figure 2, are mutually recursive. Values cor-
respond to HNFs of expressions. Constructed values (VCapp) correspond to construc-
tor applications; the components of the value are described by pointers into the heap
(HPtr). Closures (VAbs) correspond to abstraction expressions, tagged with an explicit
environment to resolve variable references in the abstraction body. Environments and
values are only well-defined in conjunction with a particular heap that contains bindings
for the heap pointers they mention.

A heap is a mapbindings from heap pointers (HPtr) to heap entries (HEntry),
together with a supplyfree of available heap pointers. Heap entries are either HNF
values, unevaluated expressions (HThunk), or “black holes” (HBlackhole). We expect
thunk entries to be overwritten with value entries as evaluation proceeds. Black holes

35

data Map a b = Map [(a,b)]

mempty :: Map a b

mempty = Map []

mget :: Eq a => Map a b => a -> b

mget (Map l) k = fromJust (lookup k l)

mset :: Map a b -> (a,b) -> Map a b

mset (Map l) (k,d) = Map ((k,d):l)

Fig. 3. A specification for theMap ADT. Note that the ordering of the list guarantees that each
mset of a given key supersedes any previousmset for that key. An efficient implementation
would use a sorted tree or hash table (and hence would put stronger demands on the class ofa).

are used to temporarily overwrite a heap entry while a thunk for that entry is being
computed; attempting to read a black-hole value signals (one kind of) infinite recursion
in the thunk definition [8, 14].

BothEnv andHeap rely on an underlying abstract data typeMap a b of applicative
finite maps froma to b, supporting simple get and set operations (see Figure 3). Note
thatmset returns anewmap, rather than modifying an existing one. It is assumed that
mget always succeeds. The map operations are lifted to thebindings component of
heaps ashempty, hget, andhset. The function

hfresh :: Heap -> (HPtr,Heap)

picks and returns a fresh heap pointer. As evaluation progresses, the heap can only
grow; there is no form of garbage collection. We also don’t perform environmenttrim-
ming[14], though this would be easy to add.

The evaluation function returns a monadic computationM Value, which in turn
uses the answer monadA. Using monads allows us to keep the code foreval simple,
while supporting increasingly sophisticated semantic domains. Our initial definition for
M is given in Figure 4. Note thatM is essentially just a function type used to repre-
sent computations on heaps. The “current” heap is passed in as the function argument,
and a (possibly updated) copy is returned as part of the function result. As usual, bind
(>>=) operations represent sequencing of computations;return injects a value into the
monad without changing the heap;mzero represents a failed evaluation;mplus rep-
resents alternative evaluations (which will be used in Section 3). The monad-specific
operations includefresh, which returns a fresh heap location;fetch, which returns
the value bound to a pointer (assumed valid) in the current heap; andstore, which
extends or updates the current heap with a binding. The functionrun executes a com-
putation starting from the empty heap.

TypeA is also a monad, representinganswers. Note that the uses of bind,return,
mzero andmplus in the bodies of the functions defined onM are actually the monad
operators forA (not recursive calls to theM monad operators!). In this section, we equate
A with the exception monadMaybe a, so that an answer is eitherJust a pair (HNF
value,heap) orNothing, representing “failure.” Failure occurs only when a required
arm is missing from a non-exhaustiveCase expression, or when an attempt is made
to fetch from a black-holed heap location.A gets instance definitions of>>=, return,

36

newtype M a = M (Heap -> A (a,Heap))

instance Monad M where

(M m1) >>= k = M (\h -> do (a’,h’) <- m1 h

let M m2 = k a’ in m2 h’)

return x = M (\h -> return (x,h))

instance MonadPlus M where

mzero = M (_ -> mzero)

(M m1) ‘mplus‘ (M m2) = M (\h -> m1 h ‘mplus‘ m2 h)

fresh :: M HPtr

fresh = M (\h -> return (hfresh h))

store :: HPtr -> HEntry -> M ()

store p e = M (\h -> return ((),hset h (p,e)))

fetch :: HPtr -> M HEntry

fetch x = M (\h -> return (hget h x,h))

run :: M a -> A (a,Heap)

run (M m) = m hempty

Fig. 4.The evaluation monad.

instance Monad Maybe where instance MonadPlus Maybe where

Just x >>= k = k x mzero = Nothing

Nothing >>= k = Nothing

return = Just

Fig. 5.TheMaybe type as a monad.

andmzero for Maybe from the standard library (Figure 5). Note that(>>=) propagates
failure.

With this machinery in place, the actualeval function is quite short (Figure 6).
Evaluation of expressions already in HNF is trivial, except for constructor applications,
for which each argument expression must be allocated as a separate thunk (since it
might be shared). Evaluation of applications is also simple. Assuming that the program
is well-typed, the operator expression must evaluate to an abstraction. The argument
expression is allocated as a thunk and bound to the formal parameter of the abstraction;
the body of the abstraction is evaluated in the resulting environment.

Letrec bindings just result in thunk allocations for the right-hand sides. To make
the bindings properly recursive, all the thunks share the same environment, to which all
the bound variables have been added.

The key memoization step required by call-by-need occurs when evaluating aVar
expression. In a well-typed program, each variable must be in the domain of the current
environment. The corresponding heap entry is fetched: if this is already in HNF, it is
simply returned. If it is a thunk, it is recursively evaluated (to HNF), and the resulting
value is written over the thunk before being returned.

A Case expression is evaluated by first recursively evaluating the expression being
“cased over” to HNF. In a well-typed program, this must be aVCapp of the same type
as the case patterns. If theVCApp constructor matches one of the patterns, the pattern

37

eval :: Env -> Exp -> M Value

eval env (Int i) = return (VInt i)

eval env (Abs x b) = return (VAbs env x b)

eval env (Capp c es) =

do ps <- mapM (const fresh) es

zipWithM_ store ps (map (HThunk env) es)

return (VCapp c ps)

eval env (App e0 e1) =

do VAbs env’ x b <- eval env e0

p1 <- fresh

store p1 (HThunk env e1)

eval (mset env’ (x,p1)) b

eval env (Letrec xes e) =

do let (xs,es) = unzip xes

ps <- mapM (const fresh) xes

let env’ = foldl mset env (zip xs ps)

zipWithM_ store ps (map (HThunk env’) es)

eval env’ e

eval env (Var x) =

do let p = mget env x

h <- fetch p

case h of

HThunk env’ e’ ->

do store p (HBlackhole)

v’ <- eval env’ e’

store p (HValue v’)

return v’

HValue v -> return v

HBlackhole -> mzero

eval env (Case e pes) =

do VCapp c0 ps <- eval env e

let plookup [] = mzero

plookup (((c,xs),b):pes) | c == c0 = return (xs,b)

| otherwise = plookup pes

(xs,b) <- plookup pes

let env’ = foldl mset env (zip xs ps)

eval env’ b

eval env (Primapp p e1 e2) =

do v1 <- eval env e1

v2 <- eval env e2

return (doPrimapp p v1 v2)

doPrimapp :: Prim -> Value -> Value -> Value

doPrimapp "eq" (VInt i1) (VInt i2) | i1 == i2 = VCapp "True" []

| otherwise = VCapp "False" []

doPrimapp "add" (VInt i) (VInt j) = VInt (i+j)

doPrimapp "xor" (VCapp "True" []) (VCapp "True" []) = VCapp "False" []

doPrimapp "xor" (VCapp "True" []) (VCapp "False" []) = VCapp "True" []

...

Fig. 6.Call-by-needeval function and auxiliarydoPrimapp function.

38

variables are bound to the correspondingVCApp operands (represented by heap point-
ers), and the corresponding right-hand side is evaluated in the resulting environment. If
no pattern matches, the evaluation fails, indicated by returningmzero.

To evaluate a primitive application, the arguments are evaluated to HNF in left-to-
right order and the resulting values are passed to the auxiliary functiondoPrimapp,
which defines the behavior of each primitive operator.

Finally, to interpret a whole-program expression, we can define

interp :: Exp -> Maybe (Value,Heap)

interp e = run (eval mempty e)

which executes the monadic computation produced by evaluating the program in an
empty initial environment. If we are only interested in the head constructor of the result
value, we can project out theValue component and ignore theHeap.

3 Non-determinism, Logic Variables, and Narrowing

We now revise and extend our interpreter to incorporate the key logic programming
features of Curry. To do this, we must record multiple possible results for evaluation,
by redefining the monadic typeA of answers. (ChangingA implicitly also changesM,
although the code definingM’s functions doesn’t change.) By choosing this monad ap-
propriately, we can add non-deterministic features to our existing interpreter without
making any changes to the deterministic fragment; the hidden “plumbing” of the bind
operation will take care of threading the multiple alternatives. Deterministic choices are
injected into the monad usingreturn; non-deterministic choice will be represented by
mplus; as before, failure of (one) non-deterministic alternative will be represented by
mzero. The definition ofA is addressed in Section 3.2.

3.1 Logic Variables and Narrowing

First, we show how to add logic variables and narrowing to the language and interpreter.
This requires surprisingly little additional machinery, as shown in Figure 7. We add a
new expression formLogic to declare scoped logic variables; the Curry expression “e
where x free” is encoded as(Logic "x" e). We add a corresponding HNFVLogic
HPtr, which is essentially a reference into the heap.Logic declarations are evaluated
by allocating a fresh heap locationp, initially set to containVLogic p, binding the
logic variable to this location, and executing the body in the resulting environment.

We now must consider how to handleVLogic values within theeval function.
The most important change is toCase; if the “cased-over” expression is bound to a
VLogic value, the evaluator performsnarrowing. (We temporarily assume all cases are
“flexible.”) This is done by considering each provided case arm in turn. For a pattern
with constructorc and argument parametersx1, . . . , xn, the evaluator allocatesn fresh
logic variable referencesp1, . . . , pn, overwrites the cased-over logic variable in the heap
with (VCApp c [p1,. . .,pn]), extends the environment with bindings ofxi to pi, and
recursively evaluates the corresponding case arm in that environment. All the resulting
monadic computations are combined usingmplus; this is the only place wheremplus

39

lift :: M a -> M a

lift (M m) = M (\h -> forestLift (m h))

data Exp = Logic Var Exp | ... as before ...
data Value = VLogic HPtr | ... as before ...

eval env (Var x) =

lift $... as before ...

eval env (Logic x e) =

do p <- allocLogic

eval (mset env (x,p)) e

eval env (Case e pes) =

do v <- eval env e

case v of

VCapp c0 ps -> ... as before ...
VLogic p0 ->

foldr mplus mzero (map f pes)

where

f ((c,xs),e’) =

do ps <- mapM (const allocLogic) xs

store p0 (HValue (VCapp c ps))

let env’ = foldl mset env (zip xs ps)

eval env’ e’

allocLogic :: M HPtr

allocLogic = do p <- fresh ; store p (HValue (VLogic p)) ; return p

Fig. 7.Evaluating logic features.

is used in the interpreter, and hence the sole source of non-determinism. Note that other
possible non-deterministic operators can be encoded usingCase; e.g., the Flat Curry
expression(or e1 e2) can be encoded as

or e1 e2 ≡ Logic "dummy" (Case (Var "dummy")

[(("Ldummy",[]), e1),

(("Rdummy",[]), e2)])

We also need to make a few other small changes to theeval code (not shown here) to
guard against the appearance ofVLogic values in strict positions, namely the operator
position of anApp and the operand positions of aPrimapp; in such cases,eval will
returnmzero. Note that because of this latter possibility for failure, the left-to-right
evaluation semantics ofPrimapps can be observed. For example, the evaluation of

Logic "x"

(Primapp "xor"

(Var "x")

(Case (Var "x") [(("True",[]), Capp "False" [])]))

fails, but would succeed (withTrue) if the order of arguments toand were reversed.
This characteristic may seem rather undesirable; we consider alternatives in Section 4.

40

3.2 Monads for Non-determinism

It remains to define typeA in such a way that it can record multiple non-deterministic
answers. The standard choice of monad for this purpose islists [15]. In this scheme,
non-deterministic choice of a value is represented by a list of values;return a pro-
duces the singleton list[a]; mplus is concatenation(++); m >>= k appliesk to each
element inm and concatenates the resulting lists of elements; andmzero is the empty
list []. However, if we want to actually execute our interpreter and inspect the an-
swers, the list monad has a significant problem: itsmplus operation does not model
fair non-deterministic choice. Essentially this is because evaluatingm1 ++ m2 forces
evaluation of the full spine ofm1, so⊥ ‘mplus‘ m = ⊥. If the left alternative leads
to an infinite computation, the right alternative will never be evaluated at all. For exam-
ple, evaluatingLetrec ["f",or (Var "f") (Int 1)] (Var "f") should produce the
answer 1 (infinitely many times). However, if we represent answers by lists, our inter-
preter will compute (roughly speaking)

(eval (Var "f")) ‘mplus‘ (return (VInt 1))

= (eval (Var "f")) ++ [VInt 1]

If we attempt to inspect this answer, we immediately cause a recursive evaluation off,
which produces the same thing; we never see any part of the answer. In effect, using
this monad amounts to performing depth-first search of the tree of non-deterministic
choices, which is incomplete with respect to the expected semantics.

To avoid this problem, we adopt the idea of Seres, Spivey, and Hoare [13], and
represent non-determinism by a lazyforestof trees of values (Figure 8). We settype

A a = Forest a. As before, we represent choices as a list, withmplus implemented
as(++), but now the lists are of trees of values. To obtain the values, we can traverse
the trees using any ordering we like; in particular, we can use breadth-first rather than
depth-first traversal:

interp :: Exp -> [(Value,Heap)]

interp = bfs (run (eval mempty e))

This approach relies fundamentally on the laziness of the forest structure. Non-trivial
tree structures are built using theforestLift operator, which converts an arbitrary
forest into a singleton one by making all the trees into branches of a single new tree.
Applying forestLift to a valuev before concatenating it into the forest withmplus
will delay the point at whichv is encountered in a breadth-first traversal, and hence
allow the other argument ofmplus to be explored first. For the example above, the
forest answer will have the form

(forestLift (eval (Var "f"))) ‘mplus‘ (return (VInt 1))

= (Forest [Fork (eval (Var "f"))]) ‘mplus‘ (Forest [Leaf (VInt 1)])

= Forest [(Fork (eval (Var "f"))) ++ (Leaf (VInt 1))]

= Forest [Fork (eval (Var "f")), Leaf (VInt 1)]

Applying bfs to this answer will produceVInt 1 (the head of its infinite result) before
it forces the recursive evaluation off.

To make use offorestLift, we need to add a newlift operator toM, defined in
Figure 7. We have some flexibility about where to place calls tolift in our interpreter

41

newtype Forest a = Forest [Tree a]

data Tree a = Leaf a | Fork (Forest a)

instance Monad Forest where

m >>= k = forestjoin (forestmap k m)

return a = Forest [Leaf a]

instance MonadPlus Forest where

mzero = Forest []

(Forest m1) ‘mplus‘ (Forest m2) = Forest (m1 ++ m2)

forestLift :: Forest a -> Forest a

forestLift f = Forest [Fork f]

forestjoin :: Forest (Forest a) -> Forest a

forestjoin (Forest ts) = Forest (concat (map join’ ts))

where join’ :: Tree (Forest a) -> [Tree a]

join’ (Leaf (Forest ts)) = ts

join’ (Fork xff) = [Fork (forestjoin xff)]

treemap :: (a -> b) -> Tree a -> Tree b

treemap f (Leaf x) = Leaf (f x)

treemap f (Fork xf) = Fork (forestmap f xf)

forestmap :: (a -> b) -> Forest a -> Forest b

forestmap f (Forest ts) = Forest (map (treemap f) ts)

bfs :: Forest a -> [a]

bfs (Forest ts) = concat (bfs’ ts)

where bfs’ :: [Tree a] -> [[a]]

bfs’ ts = combine (map levels ts)

levels :: Tree a -> [[a]]

levels (Leaf x) = [[x]]

levels (Fork (Forest xf)) = []:bfs’ xf

combine :: [[[a]]] -> [[a]]

combine = foldr merge []

merge :: [[a]] -> [[a]] -> [[a]]

merge (x:xs) (y:ys) = (x ++ y):(merge xs ys)

merge xs [] = xs

merge [] ys = ys

Fig. 8.Monad of forests and useful traversal functions (adapted from [13]).

code. For fairness, we must make sure that there is alift in every infinite cycle of
computations made by the interpreter. The simplest way to guarantee this is to apply
lift on each call toeval. If we do this, there is a clear parallel between the evalua-
tion of the answer structure and the behavior of asmall-stepsemantics. However, more
parsimonious placement oflifts will also work; for example, since every cyclic com-
putation must involve a heap reference, it suffices tolift only the evaluation ofVar
expressions, as shown in Figure 7.

42

type Flex = Bool

type Concurrent = Bool

type Prim = (String,Concurrent)

data Exp = Case Flex Exp [(Pattern,Exp)] | ... as before ...

eval env (Case flex e pes) =

do v <- eval env e

case v of

VCapp c ps -> ... as before ...
VLogic p0 | flex ->

... as before ...
store p0 ...
yield $

... as before ...
VLogic _ | otherwise -> mzero

eval env (Primapp (p,concurrent) e1 e2) =

do (v1,v2) <-

if concurrent then

conc (eval env e1) (eval env e2)

else do v1 <- eval env e1; v2 <- eval env e2; return (v1,v2)

... as before ...

doPrimapp "and" (VCapp "Success" []) (VCapp "Success" []) =

VCapp "Success" []

Fig. 9. Interpreter changes to support residuation.

4 Residuation

In real Curry, appearance of a logic variable in a rigid position causes evaluation to
residuate, i.e., suspend until the logic variable is instantiated (to a constructor-rooted
expression). Residuation only makes sense if there is the possibility of concurrent
computation—otherwise, the suspended computation can never hope to be restarted.
The only plausible place to add concurrency to our existing core language is for eval-
uation of arguments to primitives. We use an interleavings semantics for concurrency;
the result is semantically simple though not practically efficient (since the number of
interleavings can easily grow exponentially).

We can add residuation support to our core language by making only minor changes
to our interpreter, as shown in Figure 9. We extend the core language syntax by adding
a boolean flag to each primitive operator indicating whether its arguments are to be
evaluated concurrently. The most obvious candidate for this evaluation mode is the
paralleland operator normally used in Curry to connect pairs of constraints. We also
add a flag onCase expressions to distinguish flexible and rigid cases.

The evaluator relies on significant changes to the underlying monadM, which is
modified to describe concurrent computations usingresumptions[12, Ch. 12], a stan-
dard method from denotational semantics. Each monadic computation is now modeled

43

as astreamof partial computations. Theconc operator takes two such streams and
produces a computation that (non-deterministically) realizes all possible interleavings
of the streams. The atomicity of interleaving is controlled by uses ofyield; placing a
yield around a computation indicates a possible interleaving point.

With this monadic support in place, our approach to residuation is simple, and re-
quires very few changes in theeval function. Attempts to perform a rigid case over an
unresolved logic variable simply fail (just as in other strict contexts). However, argu-
ments to concurrent primitives are evaluated using theconc operator, so that if there are
any possible evaluation sequences that resolve the logic variable before it is cased over,
those sequences will be tried (along with potentially many other sequences that lead to
failure). To make this approach work, we must permit enough interleaving that all pos-
sible causal interactions between the two argument evaluation sequences are captured.
A brute-force approach would be toyield before each recursive call toeval. How-
ever, since logic variable heap locations can only be updated by thestore operation
in the interpreter code for flexibleCase expressions, it suffices toyield following that
store.1

To illustrate how interleaving works, we can define canonical code sequences for
reading and writing logic variables:

wr x k ≡ Case True (Var x) [(("True",[]), k)]
rd x k ≡ Case False (Var x) [(("True",[]), k)]

Herewr x k writes True into logic variablex (assumed to be not already set), and
then continues by evaluating expressionk. Conversely,rd x k attempts to read the
contents of logic variablex (assumed to containTrue); if this is successful, it continues
by evaluatingk; otherwise, it fails. Now consider the expression

Logic "x" (Logic "y" (Primapp ("and",True)

(rd "x" (wr "y" (Capp "Success" [])))

(wr "x" (rd "y" (Capp "Success" [])))))

The application of the concurrent primitiveand causes evaluation of the two argument
expressions to be interleaved. Eachwr induces ayield immediately following the store
into the variable, so there are three possible interleavings, shown in the three columns
below. The first and third of these fail (at the point marked*); only the second succeeds.

execution left-arg right-arg left-arg right-arg left-arg right-arg
order

1 rd "x" * wr "x" wr "x"
2 wr "y" rd "x" rd "y" *
3 wr "x" wr "y" rd "x"
4 rd "y" rd "y" wr "y"

Note that it is perfectly possible to label ordinary primitives like addition as concur-
rent. The net effect of this will be to make the result independent of argument evaluation

1 It is also essential to use black-holing as described in Section 2, thus providing a (different)
kind of atomicity around thunk evaluations; otherwise some interleavings might cause a thunk
heap location to be updated twice with different values.

44

data State a = Done a Heap

| Running Heap (M a)

newtype M a = M (Heap -> A (State a))

instance Monad M where

(M m1) >>= k = M (\h ->

do s <- m1 h

case s of

Done a’ h’ -> let M m2 = k a’ in m2 h’

Running h’ m’ -> return (Running h’ (m’ >>= k)))

return x = M (\h -> return (Done x h))

fresh :: M HPtr

fresh = M (\h -> let (v,h’) = hfresh h in return (Done v h’))

store, fetch ... modified similarly ...
yield :: M a -> M a

yield m = M (\h -> return (Running h m))

conc :: M a -> M b -> M (a,b)

conc m1 m2 = (m1 ‘thn‘ m2) ‘mplus‘ (liftM swap (m2 ‘thn‘ m1))

where

(M m1’) ‘thn‘ m2 = M (\h ->

do s <- m1’ h

case s of

Done a h’ -> return (Running h’ (m2 >>= \b -> return (a,b)))

Running h’ m’ -> let M m’’ = conc m’ m2 in m’’ h’)

swap (a,b) = (b,a)

run :: M a -> A (a,Heap)

run = run’ hempty

where

run’ h (M m) =

do s <- m h

case s of

Done a h’ -> return (a, h’)

Running h’ m’ -> run’ h’ m’

Fig. 10.Monad changes to supporting residuation.

order, thus removing one of the drawbacks we noted to the narrowing semantics of Sec-
tion 3.1. In fact, it is hard to see that anythinglessthan concurrencycanachieve order-
independence. In other words, making primitive applications independent of argument
order seems to be no easier than adding residuation.

It remains to describe the implementation of resumptions, which is entirely within
monadM, revised as shown in Figure 10. Each computation now returns one of two
States: either it isDone, producing a value and updated heap, or it is stillRunning,
carrying the heap as updated so far together with a newM computation describing the re-
mainder of the (original) computation. Simple computations (such as primitivefresh,
store andfetch operations) just returnDone states. Computations returningRunning
states are generated by theyield operator. Theconc operator non-deterministically
tries both orders for evaluating its arguments at each stage of partial computation. As
before, support for non-determinism is given by monadA (which does not change).

45

5 Conclusion and Future Work

We have presented a simple executable semantics for the core of Curry. The full code
for the three interpreter versions described here is available athttp://www.cs.
pdx.edu/˜apt/curry-monads . The structure of our semantics sheds some light
on how the basic components of the language interact. In particular, we can see that the
addition of non-determinism, logic variables and narrowing can be accomplished just
by making a suitable shift in interpretation monad. We could emphasize this modularity
further by presenting the relevant monads as compositions ofmonad transformers[11].

While we think this semantics is attractive in its own right, it would obviously be
useful to give a formal characterization of its relationship with the various existing
semantics for Curry; we have not yet attempted this. As additional future work, we plan
to pursue the systematic transformation of this semantics into a small-step form suitable
as the basis for realistic interpreters and compilers.

References

1. E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational semantics for functional
logic languages. In M. Comini and M. Falaschi, editors,Electronic Notes in Theoretical
Computer Science, volume 76. Elsevier Science Publishers, 2002.

2. S. Antoy. Definitional trees. InProc. 3rd International Conference on Algebraic and Logic
Programming (ALP’92), pages 143–157. Springer LNCS 632, 1992.

3. K. Claessen and P. Ljunglof. Typed logical variables in Haskell. In G. Hutton, editor,Elec-
tronic Notes in Theoretical Computer Science, volume 41. Elsevier Science Publishers, 2001.

4. M. Hanus, editor. Curry: An Integrated Functional Logic Language. Available at
http://www.informatik.uni-kiel.de/˜mh/curry/ .

5. M. Hanus. A unified computation model for declarative programming. InProc. 1997 Joint
Conference on Declarative Programming (APPIA-GULP-PRODE’97), pages 9–24, 1997.

6. M. Hanus. A unified computation model for functional and logic programming. InProc.
POPL’97, 24st ACM Symp. on Principles of Programming Languages, pages 80–93, 1997.

7. R. Hinze. Prological features in a functional setting — axioms and implementations. In
M. Sato and Y. Toyama, editors,Third Fuji International Symp. on Functional and Logic
Programming (FLOPS’98), pages 98–122. World Scientific, Apr. 1998.

8. R. E. Jones. Tail recursion without space leaks.Journal of Functional Programming,
2(1):73–79, January 1992.

9. P. Landin. The mechanical evaluation of expressions.Computer J., 6(4):308–320, Jan. 1964.
10. J. Launchbury. A natural semantics for lazy evaluation. InProc. POPL ’93, 20th Annual

ACM Symp. on Principles of Programming Languages, pages 144–154, 1993.
11. S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters. InProc.

22nd ACM Symp. on Principles of Programming Languages, pages 333–343, 1995.
12. D. Schmidt.Denotational Semantics: A Methodology for Language Development. Allyn and

Bacon, 1986.
13. S. Seres, M. Spivey, and T. Hoare. Algebra of logic programming. InProc. International

Conference on Logic Programming (ICLP’99), pages 184–199, Nov. 1999.
14. P. Sestoft. Deriving a lazy abstract machine.Journal of Functional Programming, 7(3):231–

264, May 1997.
15. P. Wadler. The essence of functional programming. InProc. POPL’92, Nineteenth Annual

ACM Symp. on Principles of Programming Languages, pages 1–14, 1992.

46

